Training Program for NET in Physics (TPNP)

ASSIGNMENT 4

1.	If the cart	esian	components	of σ	denote	the	three	Pauli	matrices,	then	σ ·	σ	is
	equal to												
	(a) 1	(b) 2	(c) 3	(d)	4								

- 2. If the three components $\sigma_x, \sigma_y, \sigma_z$ of $\boldsymbol{\sigma}$ denote the three Pauli matrices and if \boldsymbol{A} and \boldsymbol{B} denote any two polar vectors, then $(\boldsymbol{\sigma} \cdot \boldsymbol{A})(\boldsymbol{\sigma} \cdot \boldsymbol{B})$ is equal to (a) $\boldsymbol{A} \cdot \boldsymbol{B}$ (b) $\boldsymbol{\sigma} \cdot (\boldsymbol{A} \times \boldsymbol{B})$ (c) $\boldsymbol{A} \cdot \boldsymbol{B} + i \boldsymbol{\sigma} \cdot (\boldsymbol{A} \times \boldsymbol{B})$ (d) $\boldsymbol{A} \cdot \boldsymbol{B} + \boldsymbol{\sigma} \cdot (\boldsymbol{A} \times \boldsymbol{B})$.
- 3. If the cartesian components of $\boldsymbol{\sigma}$ denote the three Pauli matrices and if $\hat{\boldsymbol{n}}$ denotes the unit polar vector, then $(\boldsymbol{\sigma} \cdot \hat{\boldsymbol{n}})^2$ is equal to

 (a) $\boldsymbol{\sigma} \cdot \boldsymbol{\sigma}$ (b) $\hat{\boldsymbol{n}} \cdot \hat{\boldsymbol{n}}$ (c) ± 1 (d) -1
- 4. If \mathbf{A} is a polar vecor, then $(\boldsymbol{\sigma} \cdot \mathbf{A})\boldsymbol{\sigma}$ is equal to
 (a) $\boldsymbol{\sigma} \times \boldsymbol{\sigma}$ (b) $\boldsymbol{\sigma} \times \mathbf{A}$ (c) $\mathbf{A} + i\boldsymbol{\sigma} \times \mathbf{A}$ (d) $\mathbf{A} i\boldsymbol{\sigma} \times \mathbf{A}$
- 5. If A is a polar vecor, then $\sigma(\sigma \cdot A)$ is equal to
 (a) $\sigma \times \sigma$ (b) $\sigma \times A$ (c) $A + i\sigma \times A$ (d) $A i\sigma \times A$
- 6. Given the Pauli Spin operator σ and the orbital angular momentum operator L, the expectation value of the operator $\sigma \cdot L$ for an atomic electron in $d_{3/2}$ state is
 - (a) 3 (b) 1 (c) -1 (d) -3/2
- 7. If σ is the Pauli spin operator and A is a polar vector, then $\sigma \cdot A$ can be explicitly written in the following form as a matrix

explicitly written in the following form as a matrix
(a)
$$\begin{bmatrix} A_z & 0 \\ 0 & -A_z \end{bmatrix}$$
(b)
$$\begin{bmatrix} A_z & A_x \\ A_y & -A_z \end{bmatrix}$$
(c)
$$\begin{bmatrix} A_z & A_x + iA_y \\ A_x - iA_y & -A_z \end{bmatrix}$$
(d)
$$\begin{bmatrix} A_z & A_x - iA_y \\ A_x + iA_y & -A_z \end{bmatrix}$$

- 8. If α denotes the spin-up state and β denotes the spin-down state of an electron, then the matrix element $\langle \beta | \boldsymbol{\sigma} \cdot \boldsymbol{A} | \alpha \rangle$ is given by
 - (a) $A_x + A_y$ (b) $A_x A_y$ (c) $A_x + iA_y$ (d) $A_x iA_y$
- 9. If α denotes the spin-up state and β denotes the spin-down state of an electron, then the matrix element $\langle \alpha | \boldsymbol{\sigma} \cdot \boldsymbol{A} | \beta \rangle$ is given by
 - (a) $A_x + A_y$ (b) $A_x A_y$ (c) $A_x + iA_y$ (d) $A_x iA_y$

	then the matrix element $\langle \alpha \boldsymbol{\sigma} \cdot \boldsymbol{A} \alpha \rangle$ is given by (a) 1 (b) -1 (c) A_z (d) $-A_z$
11.	If α denotes the spin-up state and β denotes the spin-down state of an electron, then the matrix element $\langle \beta \boldsymbol{\sigma} \cdot \boldsymbol{A} \beta \rangle$ is given by (a) 1 (b) -1 (c) A_z (d) $-A_z$
12.	For a plane wave e^{ikz} propagating along the z-axis, what is the eigenvalue of the L_z operator? (a) 0 (b) 1 \hbar (c) 2 \hbar (d) $k \hbar$.
13.	Using the definition of angular momentum ladder operators $J_{\pm}=J_x\pm iJ_y$, it can be shown that the commutator $[J_z,J_{\pm}]$ is equal to (a) 0 (b) $\pm\hbar J_{\pm}$ (c) $\mp\hbar J_{\pm}$ (d) $\hbar J_{\mp}$
14.	Using the definition of angular momentum ladder operators $J_{\pm}=J_x\pm iJ_y$, it can be shown that the commutator $[J_x,J_{\pm}]$ is equal to (a) 0 (b) $\pm\hbar J_z$ (c) $\mp\hbar J_z$ (d) $-i\hbar J_z$
15.	Using the definition of angular momentum ladder operators $J_{\pm}=J_x\pm iJ_y$, it can be shown that the commutator $[J_y,J_{\pm}]$ is equal to (a) 0 (b) $\pm\hbar J_z$ (c) $\mp\hbar J_z$ (d) $-i\hbar J_z$
16.	Using the definition of angular momentum ladder operators $J_{\pm}=J_x\pm iJ_y$, it can be shown that the commutator $[J_+,J]$ is equal to (a) 0 (b) $2\hbar J_x$ (c) $2\hbar J_y$ (d) $2\hbar J_z$
17.	Show that for angular momentum operators, the commutator $[J_x^2,J_z]$ is equal to (a) 0 (b) $[J_y^2,J_z]$ (c) $-[J_y^2,J_z]$ (d) $-i\hbar J_y$
18.	If L_x denotes the x - component of orbital angular momentum operator, then the commutaor $[L_x,y]$ is equal to (a) 0 (b) $i\hbar z$ (c) $i\hbar p_z$ (d) $-i\hbar p_z$
19.	If L_x denotes the x - component of orbital angular momentum operator, then the commutaor $[L_x,p_x]$ is equal to (a) 0 (b) $i\hbar p_y$ (c) $i\hbar p_z$ (d) $-i\hbar p_z$
20.	The product $(\boldsymbol{\sigma} \cdot \boldsymbol{r})(\boldsymbol{\sigma} \cdot \boldsymbol{L})$ is equal to (a) 0 (b) $\boldsymbol{r} \cdot \boldsymbol{L}$ (c) $\boldsymbol{\sigma} \cdot \boldsymbol{r} \times \boldsymbol{L}$ (d) $i\boldsymbol{\sigma} \cdot \boldsymbol{r} \times \boldsymbol{L}$

10. If α denotes the spin-up state and β denotes the spin-down state of an electron,