Training Program for NET in Physics (TPNP)

ASSIGNMENT 5

If the angular momentum ladder operators J_{+} and J_{-} are defined by

$$J_{+} = J_{x} + iJ_{y}, \quad J_{-} = J_{x} - iJ_{y},$$

then J_+J_- is equal to

(a)
$$J_x^2 + J_y^2$$
, (b) $J^2 - J_z^2$, (c) $J^2 - J_z(J_z - \hbar)$ (d) $J^2 - J_z(J_z + \hbar)$

If the angular momentum ladder operators J_{+} and J_{-} are defined by

$$J_{+} = J_{x} + iJ_{y}, \quad J_{-} = J_{x} - iJ_{y},$$

then
$$J_-J_+$$
 is equal to (a) $J_x^2 + J_y^2$, (b) $\boldsymbol{J}^2 - J_z^2$, (c) $\boldsymbol{J}^2 - J_z(J_z - \hbar)$ (d) $\boldsymbol{J}^2 - J_z(J_z + \hbar)$

If the angular momentum ladder operators J_{+} and J_{-} are defined by

$$J_{+} = J_{x} + iJ_{y}, \quad J_{-} = J_{x} - iJ_{y},$$

then the matrix element $\langle j'm'|J_+J_-|jm\rangle$ is equal to

(a)
$$\{j(j+1) - m(m+1)\}\hbar^2 \delta_{jj'} \delta_{mm'}$$
 (b) $\{j(j+1) - m(m-1)\}\hbar^2 \delta_{jj'} \delta_{mm'}$

(a)
$$\{j(j+1) - m(m+1)\}\hbar^2 \delta_{jj'} \delta_{mm'}$$
 (b) $\{j(j+1) - m(m-1)\}\hbar^2 \delta_{jj'} \delta_{mm'}$ (c) $\{j(j+1) + m(m+1)\}\hbar^2 \delta_{jj'} \delta_{mm'}$ (d) $\{j(j+1) + m(m-1)\}\hbar^2 \delta_{jj'} \delta_{mm'}$

If the angular momentum ladder operators J_{+} and J_{-} are defined by

$$J_{+} = J_{x} + iJ_{y}, \quad J_{-} = J_{x} - iJ_{y},$$

then the matrix element $\langle j'm'|J_-J_+|jm\rangle$ is equal to

(a)
$$\{j(j+1) - m(m+1)\}\hbar^2\delta_{jj'}\delta_{mm'}$$
 (b) $\{j(j+1) - m(m-1)\}\hbar^2\delta_{jj'}\delta_{mm'}$ (c) $\{j(j+1) + m(m+1)\}\hbar^2\delta_{jj'}\delta_{mm'}$ (d) $\{j(j+1) + m(m-1)\}\hbar^2\delta_{jj'}\delta_{mm'}$

c)
$$\{j(j+1) + m(m+1)\}\hbar^2 \delta_{jj'} \delta_{mm'}$$
 (d) $\{j(j+1) + m(m-1)\}\hbar^2 \delta_{jj'} \delta_{mm'}$

If J is an angular momentum vector operator and A is any polar vecor, then the matrix element $\langle j, m+1|\boldsymbol{J}\cdot\boldsymbol{A}|j, m\rangle$ is equal to

(a)
$$\frac{1}{2}(A_x - iA_y) \{(j-m)(j+m+1)\}^{1/2} \hbar$$

(b)
$$\frac{1}{2}(A_x + iA_y) \left\{ (j-m)(j+m+1) \right\}^{1/2} \hbar$$

(c)
$$\frac{1}{2}(A_x - iA_y) \{(j+m)(j-m+1)\}^{1/2} \hbar$$

(d)
$$\frac{1}{2}(A_x + iA_y) \{(j+m)(j-m+1)\}^{1/2} \hbar$$
.

- If J is an angular momentum vector operator and A is any polar vecor, then the matrix element $\langle j, m-1|\boldsymbol{J}\cdot\boldsymbol{A}|j,m\rangle$ is equal to
 - (a) $\frac{1}{2}(A_x iA_y) \{(j-m)(j+m+1)\}^{1/2} \hbar$
 - (b) $\frac{1}{2}(A_x + iA_y)\{(j-m)(j+m+1)\}^{1/2}\hbar$
 - (c) $\frac{1}{2}(A_x iA_y) \{(j+m)(j-m+1)\}^{1/2} \hbar$
 - (d) $\frac{1}{2}(A_x + iA_y) \{(j+m)(j-m+1)\}^{1/2} \hbar$.
- If J is an angular momentum vector operator and A is any polar vecor, then the matrix element $\langle j, m | \boldsymbol{J} \cdot \boldsymbol{A} | j, m \rangle$ is equal to
 - (b) $m\hbar$, (c) $A_z m\hbar$, (d) $-A_z m\hbar$. (a) 0,
- The iso-spin of the deuteron is T=0. If $\eta_p=\begin{bmatrix}1\\0\end{bmatrix}$ denotes the iso-spin wave function of proton and $\eta_n = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ denotes the iso-spin wave function of neutron, then the iso-spin wave function of the deuteron is given by
 - (b) $\eta_n(1)\eta_p(2)$ (a) $\eta_p(1)\eta_n(2)$
 - (c) $\frac{1}{\sqrt{2}} \{ \eta_p(1) \eta_n(2) \eta_n(1) \eta_p(2) \}$
 - (d) $\frac{1}{\sqrt{2}} \{ \eta_p(1) \eta_n(2) + \eta_n(1) \eta_p(2) \}$
- Consider the deuteron to be a bound state of two nucleons (proton and neutron) in s - state (relative orbital angular momentum l=0) and spin S=1. If $\alpha = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ denotes the spin-up state of neucleon and $\beta = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ denotes the spin-down state of nucleon, then the spin wave function of the deuteron is given by
 - (a) $\alpha(1)\alpha(2)$ (b) $\beta(1)\beta(2)$ (c) $\frac{1}{\sqrt{2}}\{\alpha(1)\beta(2) + \beta(1)\alpha(2)\}$ (d) all the three given in (a), (b) and (c).
- Pions exist in three charge states, π^+, π^0, π^- . An isospin $T_{\pi} = 1$ is attributed to the pion and its three charge states are identified with the three projections $m_{T_{\pi}} = 1, 0, -1$ of the isospin. Nucleon exists in two charge states, proton and neutron and it is attributed an isospin $T_N = 1/2$ with projections $m_{T_N} = +\frac{1}{2}$ denoting the proton and $|m_{T_N}| = -\frac{1}{2}$ denoting the neutron. The isospin wave function $|\pi^-p\rangle$ of a system consisting of π^- and proton can be written as
 - (a) $|T = \frac{3}{2}, m_T = -\frac{1}{2}\rangle$, (b) $|T = \frac{1}{2}, m_T = -\frac{1}{2}\rangle$, (c) $\frac{1}{2}|T = \frac{3}{2}, m_T = -\frac{1}{2}\rangle + \frac{1}{2}|T = \frac{3}{2}, m_T = -\frac{1}{2}\rangle$,

 - (d) $\begin{bmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ -1 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} | T = \frac{3}{2}, m_T = -\frac{1}{2} \rangle + \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{2} \\ -1 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix} | T = \frac{1}{2}, m_T = -\frac{1}{2} \rangle,$

where the symbol $\begin{bmatrix} 1 & \frac{1}{2} & \frac{3}{2} \\ -1 & \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$ denotes the C.G. coefficient.