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Abstract: The particles interact by exchange of vector bosons known as
gauge bosons. The electromagnetic interaction is due to exchange of photons
which are massless but the weak interaction is due to exchange of intermediate
vector bosons which are massive. It is postulated that the vector bosons
acquire mass by interaction with the hypothetical scalar energy field known as
Higgs field that pervades the entire universe. This concept has been extended
to the generation of mass for leptons and quarks which are the constituents
of matter.

1 Introduction

How do the particles acquire mass? You will find a satisfactory answer in Quan-
tum Field Theory [1,2] which is based on the Lagrangian formulation of classical
mechanics and the Hamiltonian action principle.

Consider the Lagrangian of a system of particles, which is a function of their
positions and velocities that are time-dependent. The insistence that it should
obey the Hamilton principle of least action leads to the Euler-Lagrange equation of
motion. This Lagrangian formalism developed for a discrete mechanical system can
be extended to fields which are continuous functions of space-time coordinates and
their first derivatives. Using the action integral and the variational principle, we can
obtain analogous Euler-Lagrangian equations of motion for the fields.

The Schrodinger equation, the Klein-Gordon equation and the Dirac equation
can be considered as field equations. Each of them corresponds to Euler-Lagrange
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equation of motion, that can be deduced from the corresponding Lagrangian. Each
Lagrangian has a certain phase or gauge symmetry and is said to be invariant under
the phase or gauge transformation. If the phase is independent of the space-time
coordinates, then the invariance of the Lagrangian under the gauge transformation
is said to be global. If the phase is dependent on the space-time coordinates, then
the Lagrangian is no longer invariant but the invariance can be restored by including
an additional term in the Lagrangian. The additional term is the interaction term
due to the gauge boson in the Lagrangian. The invariance of the Lagrangian under
a phase transformation which is dependent on the space-time coordinates is known
as the local gauge invariance. In other words, a Lagrangian which is invariant under
certain global gauge transformation can also be made to satisfy the same local gauge
transformation by introducing an additional term corresponding to an interacting
boson. Thus, the local gauge transformation dictates the interaction dynamics of
the Lagrangian.

Let us consider the Dirac Lagrangian for the electron. It is invariant under
the gauge transformation of the field function ¢ (x) — 1 (x)e’®, where « is a real
constant. If (x) is a function of space-time coordinate x, then the Lagrangian can
be made to be invariant under local gauge transformation 1 (x) — 1 (x)e’*X) by
introducing an additional term corresponding to an interaction with electromagnetic
field A,. The additional field A, is called the gauge field, the quantum of the field
is called the gauge boson and the underlying theory is called the gauge theory. In
the present case, the gauge boson is the photon which has rest mass zero.

In the Standard Model of Elementary Particles, the fundamental particles are
six leptons (e~,ve), (™, vu), (7,17), six quarks (u, d, s, ¢, b, t) and the corresponding
anti-leptons and anti-quarks. The interaction between them takes place by exchange
of gauge bosons. In the standard model, we consider only three types of interaction
- electro-magnetic, strong and weak interactions - and the gravitational interaction
is outside its purview. The electromagnetic interaction arises from exchange of
photons, the strong interaction by exchange of gluons and the weak interaction by
exchange of intermediate vector bosons. Photons and gluons have rest mass zero
whereas the intermediate vector bosons W+, W=, Z° are massive with rest mass of
about 80 GeV.

Of all the three interactions, the gauge theory of electromagnetic interaction is
the simplest, since the Lagrangian is invariant under U(1) gauge transformation and
the gauge boson is the photon with rest mass zero. Since the quarks are coloured
objects with three different colours, the Lagrangian for the strong interaction has
SU(3) gauge symmetry and the theory of strong interaction is known as Quantum
Chromodynamics. The strong interaction arises from exchange of gluons which are
once again particles of zero mass. But there is a problem in developing a gauge theory
for weak interaction since the interaction arises from an exchange of intermediate
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vector bosons which are massive. The introduction of mass term in the Lagrangian
spoils the symmetry of the Lagrangian. The invariance of the Lagrangian under
gauge transformation is an essential condition for developing a successful field theory
[3,4,5]. How to add mass to the gauge boson without violating the gauge symmetry
of the Lagrangian? That was the vexing problem in 1964. Three different groups
[6,7,8] were simultaneously but independently working on this problem and they
came out with a similar solution.

If a massless gauge boson interacts with a complex scalar field, the
lowest eigenstate of the interacting gauge boson with the complex scalar
field is shifted from the symmetry axis of the Lagrangian. If the Lagrangian
is re-written with reference to the lowest eigenstate, then the gauge boson acquires a
mass. The original Lagrangian has the symmetry but the same Lagrangian
re-written with respect to the lowest eigenstate has lost the symmetry
and this is known as the spontaneously broken symmetry.

The complex scalar field that is postulated is known as Higgs field and
it is a field of a scalar particle with imaginary mass, rather an energy field
which pervades the entire universe. The massless gauge boson interacting
with Higgs field acquires mass. This way of acquiring mass by the gauge
boson is known as the Higgs mechanism.

The weak interaction Lagrangian is invariant under SU(2) gauge transformation
but the Lagrangian of the unified electro-weak interaction is invariant under SU(2)
x U(1) gauge transformation. In the electro-weak Lagrangian, the mass term of
the fermion is to be dropped since it is not invariant under the combined SU(2)
x U(1) gauge transformation but the mass of the fermion can be recovered by
its interaction with Higgs field. In a similar way, all leptons and quarks acquire
masses by interaction with Higgs field. Thus the Higgs field which was first
postulated to endow mass to the gauge boson without violating the gauge
invariance of the Lagrangian has now assumed a greater role of endowing
mass to all the particles.

The Higgs field is just an hypothetical field that is thought to pervade the entire
universe. Is there any experimental evidence for it? Yes, there is. The interacting
Lagrangian which includes Higgs field not only supplies mass to the gauge boson
and to the particles but also produces a massive scalar particle (Hiigs boson) in this
process. The experimental detection of this Higgs boson will validate the postulate
of Higgs field. That is why, the CERN has set up an international collaboration for
detecting the Higgs boson and succeeded in its efforts after a lapse of 50 years.

Higgs boson can be considered as an excited quantal state of Higgs
field and thus the experimental discovery of Higgs boson offers a strong
support to the concept of Higgs field, pervading the entire universe.
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2 Lagrangian and Euler-Lagrange Equation

Given the Lagrangian of a mechanical system

L = L(qi(t), 4r(1), 1),

where g (t) and ¢, (t) = % with k = 1,2,--- ,n denote the generalized coordinates

and velocities which are functions of time ¢, the Action Integral o/ is given by

v= * Lt u(t). Ot

1

According to the variational principle!, the action integral has a stationary value
and the variation 0.7 of o/ due to small variation in path with fixed end-points is
identically zero. This leads to the Euler-Lagrange equation of motion [1,2].

) k=1,2,...,n. (1)

The Lagrangian formalism which has been developed for a discrete mechanical
system can be extended to a field, described by a field function i (x,t) where x and
t are continuous variables. For this, instead of the Lagrangian L, we need to work
with the Lagrangian density .Z.
oy
2 (0 G x) = 2 (),

v

where, for brevity, a notation v,, is used to denote %. The Lagrangian density

is a function of field functions 1,, its first order derivatives and the space-time
coordinates (x : xg = ct,x1, T2, x3). It is important that £ should not depend on
second and higher order derivatives of v,,.

The Lagrangian and the action integral are given by
L= [ 2 W) da )
o = / g(,@bpﬂ/}p,mx) d4l‘; (3)
v

where

d*z = deodrideodes = cdtdrdydz,

LOf the various paths available between the two given end points, the system chooses the path
for which the action integral ./ is minimum. This is found by the calculus of variations.
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and V' is a certain domain in space-time, bounded by a hypersurface S. According to
the principle of least action, the variation .7 in &7 for arbitrary domains V' is zero
for the variations of ¢,(x). This leads to the following Euler-Lagrange equations,
analogous to Eq. (1), for the Lagrangian density of fields.

0 0%
Z — = =, v=0,1,2,3, p=1,2,...,n (4)

877/11) Ox v O gwa

These equations, in turn, lead to the field equations. Since .Z does not involve
derivatives of 1, of order higher than the first, the resulting field equations will be
utmost of second order.

Using the short-hand notation, the Euler-Lagrange Eq. (4) can be rewritten as

0L 0L

__al/—zo’ :1,2,...,/”/, 5
0, O(0u1y) ’ ®)

with the convention that a summation is to be made on the repeated indices.

The Schrodinger equation, the Klein-Gordon equation and the Dirac equation
are the field equations that are on a par with the Euler-Lagrange equation (5). Given
the Lagrangian densities,

s = W VY-V, (6)
Lra = 3 Z (awy) %M%Q, where = % (7)
Lp = PO, —pu(x),  where p= - (8)

we can obtain, using the Euler-Lagrange equation (5), the corresponding field equa-
tions.

Schrodinger Eq. —h—V 2+ Vap — h%—:/; =0 9)
0 0 1 02
.G. Eq. O+ 2 - 0= = —— V2
K.G. Eq (B +7)w(x) =0, oxv Oz,  c*0t? v (10)
Dirac Eq. (170, — ) (x) = 0. (11)

In natural units, h = ¢ = 1, u = m. Thus, we have shown that for each field
equation, there is a corresponding Lagrangian density and that field equation is just
the FEuler-Langrage equation obtained with that Lagrangian density.
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3 The Gauge invariance of the Lagrangian density

In classical mechanics, we deal with Lagrangians L but in field theory, we only work
with Lagrangian densities .Z. Since the present study is in Quantum Field Theory,
let us change the nomenclature for simplicity and call hereafter the Lagrangian
density .Z, simply as Lagrangian.

The Lagrangian is invariant under a phase or gauge transformation of the field
function. There are two types of gauge transformations global gauge transformation
and local gauge transformation. In global gauge transformation, the gauge transfor-
mation is independent of space-time coordinates and in local gauge transformation,
the gauge transformation is dependent on the space-time coordinates. The La-
grangian which is invariant under global gauge transformation is no longer found
to be invariant under local gauge transformation but, in some cases, the invariance
of the Lagrangian may be restored by adding an additional term corresponding to
a gauge boson in the Lagrangian. Let me illustrate this point by giving a specific
example.

3.1 The Global gauge transformation

Let us consider the Dirac Lagrangian (in natural units) for electron of rest mass m.

&L = P(x)(17"8,, — m)(x), (12)
where v*, ;1 =0, 1,2, 3 denote the four gamma matrices, ¢ = ¥'7°, x = 2°, 2!, 22, 23
and 0, = %. It can be easily checked that the Lagrangian .Z is invariant under

the phase transformation
(x) = eP(x), (13)
where « is a real constant. It follows that

b — 0. (14)
v = e (15)
The phase transformation U(a) = €'®, with a single parameter « running over all

real numbers, forms a unitary Abelian group U(1). It is called Abelian since the
group multiplication is commutative.

U(ar)U(az) = Ul(ag)U(ay).
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3.2 The Local gauge transformation

Let us investigate what happens to the Lagrangian under local phase (gauge) trans-
formation. In this case, « is a function of space-time coordinates x. From Eq. (13),
it follows

e *Xy(x) (16)
00— 00 = B, (“P(x)
= (8 ew‘(x)) —l—em #w( X)
i (Ope(x)) W(X)Ib( ) + ¢, (x). (17)

For Fermions,
Ly = P (" —m)y

= —QE(C%CQVW + 77;(2'7“(9}1 —m)
= —(Oua)y" + L. (18)

Equation (18) clearly indicates that the Dirac Lagrangian is not invariant under
local phase transformation. This failure can be rectified by introducing new fields
such that the modified Lagrangian has the local symmetry. The extra term on the
right-hand side of Eq. (18) involves a factor d,a which transforms like a four-vector.
Introducing an additional term with a four-vector field A, in the Dirac Lagrangian,
a modified Lagrangian

L =P(iv"0, — m)Y + ey P A, (19)
can be obtained which has a local symmetry under the transformation

Y — ) = Xy, Ay — Al (20)
What should be the transformation property of A, such that the modified
Lagrangian ¢’ is invariant under the local phase transformation? The modified
Lagrangian ¢’ is

L' = ("0, — m)Y + ey YA,
_ 1 _
= Y(iv'd, —m)p +e (A;L — ga“a> Yy, (21)

Z" is invariant if the newly introduced four-vector field A4, transforms as

1
A;l = AM + gaﬂa. (22)
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Thus, we find that the Lagrangian . which is invariant under global gauge trans-
formation is not invariant under local gauge transformation but the modified La-
grangian .’ which includes an interaction term with a gauge field A, is invariant
under local gauge transformation. Thus the requirement of the local gauge invari-
ance dictates the interaction dynamics of the Lagrangian.

Since the origin of the interaction term can be traced to the introduction of a new
field to make the Dirac Lagrangian invariant under a local gauge transformation,
the newly introduced field has come to be known as gauge field, its field quantum
as gauge Boson and the underlying theory as gauge theory.

4 Gauge theory of Electro-magnetic interaction

Now one can easily identify that the newly introduced field A, is none other than
the electromagnetic field; interaction with which makes the Dirac Lagrangian of
the electron invariant under the same local transformation. Adding the free field
Lagrangian of the electromagnetic field?, we obtain the full Lagrangian for the com-

bined field of ¢ and A,,.
_ 1 L
L =Yy, —m)y — ZFWF“ + ey A,. (23)

This is the Lagrangian that is used in field
theory for the study of Quantum Electro-
dynamics (QED). It may be observed that
the full Lagrangian (23) consists of an in-
teraction term

gauge boson

gint = 62/77#1/]14#7

besides the free-field Lagrangians of Dirac
and e.m. fields.

Please note that the Lagrangian (23) does
not contain any mass term for the gauge
boson A, since the photon is massless.

Fig. 1: Electron-electron interaction

If one includes a mass term for the gauge field, the Lagrangian will no longer be
invariant under gauge transformation. The invariance of Lagrangian under gauge

2Since the electromagnetic field strength tensor F,.
F,, =0,A, -0,A,

is gauge invariant, the total Lagrangian .Z remains gauge invariant.
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transformation is an essential condition to be fulfilled for developing any successful
field theory [3,4,5].

4.1 Gauge covariant derivative
Let us define a gauge covariant derivative® D,,.
D, =8, —icA (24)

)

such that the complete Lagrangian for QED (Eq. (23)) can be written in the form

&L =Y(iy" D, — m)y — }lFWFW. (25)

The same technique can be used for any other field with global symmetry. Let
us illustrate it for the charged scalar field ¢. Any complex scalar field ¢ which has
a global phase symmetry for the transformation

¢ — €%

will also acquire a local phase symmetry with the substitution
1
0y — Dy; A, — A+ g@ua.

Thus we can obtain the Lagrangian for the complex scalar field ¢ interacting with
the electromagnetic field A, as

2 = (D,0)!(Dub) — m?016 — [P (26)

The Lagrangian (Eq. 26) contains the mass term for the complex scalar field but
not for the gauge boson.

The e.m. interaction is a large range interaction since the exchanged gauge boson
is massless, whereas the weak interaction is of very short range since the exchanged
gauge boson W™ is massive.

The Lagrangian will no longer be invariant under the gauge transformation, if
a mass term for the gauge boson is added, but the invariance of Lagrangian under

3The gauge covariant derivative of 1, D,, transforms in the same way as 1.

D(x) = (), D,p(x) = XDy (x).



10 V. Devanathan

gauge transformation is an essential condition for developing a successful gauge
theory.

How to add a mass term for the gauge boson without violating the invariance of
the Lagrangian under gauge transformation? This was the problem that was faced
in nineteen sixties. Three different groups [6,7,8] working independently came out
with a similar solution in 1964.

Allow the gauge boson to interact with a hypothetical complex scalar field with
imaginary mass (an energy field), which is now called the Higgs field, named after
one of the proponents. The Higgs field is postulated to pervade the entire universe.
Find the lowest eigenstate of the gauge boson interacting with the Higgs field and it
is found to be shifted from the symmetry axis of the Lagrangian. If the Lagrangian
is re-written with reference to the lowest eigenstate, the symmetry is lost and it
is known as the spontaneous broken symmetry. In the re-written Lagrangian, a
mass term for the gauge boson appears. This is done without violating the gauge
symmetry of the original Lagrangian. This way of generating the mass for the gauge
boson is known as the Higgs mechanism.

4.2 Spontaneous Symmetry Breaking and Higgs Mechanism

Let us start with the QED Lagrangian (26) for a charged scalar field of particle with
mass ¢ and include the self interaction term A(¢*¢)? for the scalar field [2].

i?:(3“+ia$ﬂ¢%@j—ia%ﬂ¢——v¥—iﬁ@iwﬂ (27)

with
V = 12670 + A¢°9)2.

This Lagrangian (27) is invariant under a U(1) local gauge transformation.
¢ — X,

It corresponds to a scalar field ¢ of mass 1 and a gauge field A, which is massless.
By treating 2 and \ as parameters and taking y? < 0 and A > 0, we will be able to
generate a mass for the gauge boson A* by the method of spontaneous symmetry
breaking. This way of generating a mass for gauge boson is known as the Higgs
mechanism.

Minimizing the potential

d
V = 1269+ A6 6)2, % — 120+ 2N 0)6" = O,
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we get
2 2 2
o= =5% v=y"%

o 27 A

This corresponds to the vacuum expectation value

(9) = % = —g. (28)

Only the magnitude is obtained but its phase is arbitrary. There are many ground
states located on a circle of radius v with the same energy as shown in Fig. 2(b)
and the system can be in anyone of the ground states.

V(o) V(¢)

(a)

Figure 2: The shape of V(¢) for a complex scalar field with A > 0 and (a) p? > 0
and (b) p? < 0.

We can now expand the complex scalar field ¢(x) in terms of two real fields n(x)
and ¢(z) which have zero expectation values at the ground state.

o1a) = |3+ (o) + i) (29)
This yields
56 = Slotn?+e). (30)

Vo= 1(¢"0) + AMe"9)?,  with p® = —v?A
= 2 {(v+n)?+ 52} {—20"+ (v+n)*+ 62}

= 2 {(P +& +2up)* —v'}. (31)
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Expanding the complex scalar field ¢ in terms of the real fields n and ¢ that
correspond to the ground state of the system

o) = |/ 30 4 n(a) + ()Y,

we can rewrite the Lagrangian .Z in terms of the new fields n(z) and (x).

The first term in the Lagrangian (27) yields
1 1
5(8H77)(a#77) + 5(8”5) (Oug) + €2A#Au¢*¢-

Using the expressions (30) and (31), deduced earlier for ¢*¢ and V', we rewrite the
Lagrangian (27) in terms of the new fields 1 and e.

1 1 1
Z’ = 5(8“7’]) (8,[/]) + 5(8”5) (au5) + §€2U2AHAM
1
—v*\n® — evA, e — ZF“”FW + interaction terms. (32)

The Lagrangian ¢’ exhibits a particle spectrum which consists of a massive gauge
vector boson A,,, a massive scalar 7, a massless Goldstone boson . From an inspec-
tion of the Lagrangian (32), we can write down the masses of the particles.

my = ev, my = V22, me = 0.

In this way, we have dynamically generated a mass for the gauge boson A, but
along with it, we have also a massless Goldstone boson €. The Lagrangians .
and ¢’ are equivalent and the number of degrees of freedom cannot change by this
transformation. In £, we have a complex scalar field with mass which accounts for
two degrees of freedom and a massless gauge boson A, with two degree of freedom
corresponding to transverse polarizations. Thus, in total, we have four degrees of
freedom in the Lagrangian .. On the other hand, in ¢, the gauge boson A,
has acquired a mass and so it can have longitudinal polarization in addition to two
transverse polarizations. There are also two scalar particles, one with mass () and
another without mass (¢) (known as Goldstone boson). Thus, we have, in total, five
degrees of freedom in the Lagrangian .#’. The Goldstone boson, which is spurious,
has to be eliminated. The presence of off-diagonal term evA,d" e in £ requires some
attention. Is it possible to eliminate the field ¢ by choosing some particular gauge
transformation? Yes, it is, by choosing a slightly modified gauge transformation.

4.2.1 The unitary gauge

We get a clue from the expansion of the field ¢ in terms of the fields n and ¢ which

define the ground state.
1
o= \/;(v+77+i€).
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This is the lowest order in € but instead of this, we shall include higher orders in e

and write [2]
1 .
¢ = \/;(v + )l

This suggests that we should substitute a different set of real fields h, 6, A,.

1 )
0 — ¢ = 5w+ h()e” " (33)
, 1
Ay — A = A+ —0,0 (34)

This is a particular choice of gauge, known as the unitary gauge, that makes the
Lagrangian independent of the field 6.

L= (0 1 e AN (D, — ieAL)S — V — %FWFW, (35)
where
Vo= @270+ N¢7¢)?, with  p? = —0®A
= 2 (h* + 4vh® + 40°h* — v*) . (36)
The first term in (35) yields
(0" +ieA™)¢"™ (0, — ieA),)d'
= %8’% ouh + %621}214“14“ + %ezth“Au + e*vh AP A,. (37)

Substituting (36) and (37) into the Lagrangian (35) and rearranging, we get

1 1 1
Z" = 5@/1)2 — M?h? — §e%ZAi — \wh?® — Zw
1 1 1.
—|—§62h2Ai +ve’h A2 + Z)\v4 - ZF" F. (38)

We have successfully eliminated the Goldstone boson which is spurious. The La-
grangian (38) just describes two interacting massive particles, the massive gauge
vector boson A, and a massive scalar boson h which is called the Higgs boson.

ma = ev, mp, = V2 2.

The unwanted massless Goldstone boson has been used up to provide the longi-
tudinal polarization for the massive gauss vector boson A,. Since the above study
offers a method of producing massive gauge vector boson by eliminating the spurious
Goldstone boson, this method is also known as the Higgs mechanism.
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5 Gauge Theory of Weak Interaction

Just as the e.m. interaction is explained by the exchange of photons, the weak in-
teraction can also be explained by exchange of gauge bosons. In this case, the gauge
bosons are intermediate vector bosons which are massive with mass in the order of
80 GeV/c.

For illustrative purpose, let us consider
the beta decay of the neutron.

n—p+e + .

. time p
This decay can be represented by the
the Feynman diagram as shown in
Fig.3. The neutron emits an interme-
diate vector boson W~ and transforms n
into a proton and the emitted boson
W~ decays into e~ and 7,. In Feynman
diagrams, the particles travel forward
in time while the anti-particles travel Fig. 3: Feynman diagram for beta decay
backward in time.

The e.m. interaction is a large range interaction since the exchanged gauge boson
is massless, whereas the weak interaction is of very short range since the exchanged
gauge boson W~ is massive.

The Lagrangian will no longer be invariant under the gauge transformation, if
a mass term for the gauge boson is added, but the invariance of Lagrangian under
gauge transformation is an essential condition for developing a successful gauge
theory.

How to add a mass term for the gauge boson without violating the invariance of
the Lagrangian under gauge transformation? This was the problem that was faced
in nineteen sixties. Three different groups [6,7,8] working independently came out
with a similar solution in 1964.

Allow the gauge boson to interact with a hypothetical complex scalar field with
imaginary mass (an energy field), which is now called the Higgs field, named after
one of the proponents. The Higgs field is postulated to pervade the entire universe.
Find the lowest eigenstate of the gauge boson interacting with the Higgs field and it
is found to be shifted from the symmetry axis of the Lagrangian. If the Lagrangian
is re-written with reference to the lowest eigenstate, the symmetry is lost and it
is known as the spontaneous broken symmetry. In the re-written Lagrangian, a
mass term for the gauge boson appears. This is done without violating the gauge
symmetry of the original Lagrangian. This way of generating the mass for the gauge
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boson is known as the Higgs mechanism.

Proton and neutron can be considered as two charge states of a nucleon and
accordingly the nucleon field is to be treated as a doublet in the iso-spin space of
the nucleon.

Uy = w: } (39)

The Lagrangian density of the nucleon is invariant under the global gauge transfor-
mation U = e’®7/2 where the components of T are the Pauli iso-spin matrices

0 1 0 —1 1 0
Tx—{lo}, Ty—{i 0] TZ—|:0 _1}. (40)
and the components of a are ay, oy, o, which are constants, independent of the
space-time coordinates. Then

Uy — Uy =UUy =Ty (41)

@N — E;V = EN[]Jr = @Neiia'T/Q. (42)
Since det U = 1, this corresponds to SU(2) unitary transformation and it is said to
be non-Abelian since the generators 7, 7,, 7. do not commute.

In order to make the Lagrangian invariant under local gauge transformation, we
need to introduce three massless gauge bosons, which will acquire mass by interac-
tion with the Higgs field, invoking the concept of spontaneous symmetry breaking
and Higgs mechanism.

In the present case, we need to consider a SU(2) doublet structure for the complex
scalar field ¢ with four components ¢y, ¢o, P3, Py4.

o=[a]=vhlara) g
It can be easily checked that the Lagrangian %
Z = (0u0)1(0"0) — 1*¢'d — M'9)%, (44)
is invariant under global SU(2) phase transformation.
¢ — ¢ =X, (45)

To make it invariant under local gauge transformation with a(x), we need to replace
the derivative 0,, with covariant derivative

1
D, =0,+ -igr,W}

iV, (46)
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invoking three gauge vector fields W with a = 1,2,3. The strength of the SU(2)
coupling to the Gauge fields is denoted by g.

The lowest eigenstates of the scalar fields interacting with the gauge fields W
are shifted from the symmetry axis of the Lagrangian and if the Lagrangian is re-
written with reference to one of the lowest eigenstates, then the symmetry of the
Lagrangian is spontaneously broken. The three gauge vector bosons W* acquire
masses by absorbing the three scalar fields and the fourth scalar field yields the
massive Higgs boson. The experimental detection of the massive Higgs boson is the
only way by which the postulate of Higgs field (scalar energy field), pervading the
entire universe, can be verified.

6 Electroweak Interaction

The unified gauge theory of elctromagnetic and weak interactions was successfully
developed by Weinberg and Abdus Salam [9,10], invoking invariance under SU(2)
x U(1) gauge transformation. The standard model of elementary particles admits
three generations of leptons and quarks.

(o)) Ge) () () ()

For studying their weak interactions, they are grouped together by defining weak
isospin 1" and weak hypercharge Y quantum numbers, such that the charge of the
particle is given by

Q=Ty+ . (47)
In Table 1, the weak isospin 7" and weak hypercharge Y quantum numbers are
given only for the firat generation of leptons and quarks. Similar quantum numbers
are given for the second and third generations of leptons and quarks. According to
the standard model of elementary particles, the neutrino is left-handed with zero
rest mass. Since the electron has a finite mass, it can have both right-handed and
left-handed components. As shown in Table 1, the electron neutrino and the left-
handed electron are paired together to form a doublet with weak iso-spin T = % and
weak hypercharge Y = —1 but different iso-spin projections T3 = +3 and T3 = —1.
The right chiral electron is a singlet with weak iso-spin 7" = 0 and weak hypercharge
Y =-2.

b = { _} withT =1 ¥V = —1; (48)

Y
v = eg with T =0,V = —2. (49)
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Table 1: Weak isospin T and weak hypercharge Y quantum numbers of the first
generation of leptons and quarks with charge ) =T + %

Lepton T 13 @Q Y Quark T T3 @ Y
T
R il I S T

ug 0 0 %2 3
er 0 0 -1 -2 dr 0 0 -3 -2

They are subjected to gauge transformation SU(2) x U(1) as shown below:

b — ), = dTHBO)y, (50)
vp — Y =PV Dyp, (51)

For global phase invariance, the quantities o and  will be independent of space
time coordinates and for local phase invariance, a(x) and f(x) will be dependent
on the space-time coordinates x.

In this scheme, the Dirac Lagrangian .Z of the electron-neutrino pair is invariant
under global SU(2)xU(1) gauge transformation, only if the mass term of the electron
is excluded from the Lagrangian as shown below.

L = ELV”(Z@M)%DL +ery"(i0,)er,

In order to make the Lagrangian invariant under local gauge transformation, we
need to introduce four vector gauge bosons Wy, Wy, W3 and B in order to make the
derivative 0, to correspond to a covariant derivative D,,.

(z’@u)L — (ZD“)L = (Z@;JL — gT -W — gl%YB#,WZth Y = —1; (52)
(i@M)R — (ZDM)R = (Zau)R — QI%YBM, with Y = —2. (53)

Thus, we obtain the SU(2) x U(1) local gauge invariant Lagrangian of the
electron-neutrino pair, by substituting 7' = 7 and the respective Y values.

L1 o= (z’@u — 397 - W + %QIBM) YL +er" (10, + g'By) er

1 1
— W - W* = 2B, B". (54)



18 V. Devanathan

The last two terms in Eq. (54) represent the kinetic energies and self-coupling of
the W, fields and the kinetic energy of the B, field.

W, = 0,W,—0,W,—gW, x W, (55)
B, = 8,B,—0,B,. (56)

Note that the Lagrangian .#; corresponds to massless fermions and massless gauge
bosons. To generate the masses for the gauge bosons W, Wy, W3 and B in a gauge
invariant way, we invoke the Higgs field and the Higgs mechanism of spontaneous
symmetry breaking.

A suitable linear combinations of these gauge bosons yield the three massive
vector bosons W, W~ and Z°, associated with weak interaction and the massless
photon A, associated with electromagnetic interaction. The same Higgs doublet of
scalar fields is used to generate lepton masses by spontaneous symmetry breaking
but a slightly modified Higgs doublet of scalar fields is used to generate quark
masses. Thus, all the particles including gauge bosons acquire mass by interaction
with Higgs scalar fields by a process known as Higgs mechanism.

7 An Amazing Analogy

God loves symmetry and most of His creations have symmetry in their physical
structure. Let us consider the structure of a human being. There is a left-right
symmetry about the median line. Two hands, two legs, two eyes, two ears - all
are symmetrically placed. In case of single organs such as head, nose and mouth,
they are located on the median line. Even the internal organs, lungs and kidneys,
exhibit such a symmetry. But, in the case of heart, there is only one but is slightly
displaced to the left of the median line. The lowest eigenstate of a human being is
the heart-beat and if it stops, the man is dead and gone. If one describes the features
of the man with respect to the location of his lowest eigenstate (the heart-beat), the
symmetry is lost and it is analogous to the spontaneously broken symmetry.

Let us continue the analogy and consider the human being to arise from the
interaction of the human body with its soul.

Human Body + Soul = Human Being

However great and eminent a person may be, when you hear the sad news of his
death, the first question that is asked is: ”When the body is expected?” Then we
pray for his soul and convey the condolences to his family as ”May his soul rest in
peace!”

What is the soul? It is an abstraction of life and it is a source of energy like
Higgs field. Without life, nothing will grow and acquire a mass. Just as the matter
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fields and gauge fields acquire mass by interaction with Higgs field, the living beings
acquire mass by interaction with soul. Just as Higgs boson serves as an evidence for
the Higgs field, the growth of a living being serves for the concept of soul (life).

8 Concluding Remarks

The invariance of Lagrangian under gauge transformation is a mecessary condition
for developing a gauge theory of elementary particles and their interactions. The
gauge theory of electro-magnetic interaction is highly successful since in this case
the gauge boson (photon) is massless. Adding mass to the gauge boson spoils
the invariance of Lagrangian under gauge transformation and this has led to the
postulate of Higgs field (an energy field which is a scalar field with imaginary mass),
the interaction with which shifts the lowest eigenstate of the interacting gauge boson
to a location away from the symmetry axis of the Lagrangian. Although the original
Lagrangian obeys the U(1) symmetry under gauge transformation, the Lagrangian
written with respect to the lowest eigenstate does not reveal the gauge symmetry
but allows the mass term for the gauge boson. This is known as the spontaneously
broken symmetry and this way of allowing the gauge boson to acquire a mass is
known as the Higgs mechanism. This has enabled the development of gauge theory
of weak interaction with massive gauge bosons, obeying SU(2) gauge symmetry.

The unification of electromagnetic and weak interaction is made by invoking
SU(2) x U(1) gauge symmetry of the Lagrangian and this does not permit the mass
terms for fermions and leptons in the Lagrangian but the mass of fermions and
leptons can be generated, using the same Higgs mechanism, by allowing them to
interact with Higgs field.

Thus the Higgs field serves as a source of endowing all the particles with mass
and, in this process, a massive scalar boson known as Higgs boson is emitted. The
experimental detection of Higgs boson with a mass of about 126 GeV/c? in the
Large Hadron Collider (LHC) experiment at CERN in the year 2013 justifies the
postulate of Higgs field pervading the entire universe. The discovery of Higgs boson
is the crowning glory for the concept of Higgs field and Higgs mechanism and two of
the originators of this idea, Peter W. Higgs and Francis Englert were jointly awarded
the Nobel Prize in Physics for the year 2013.
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