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Issues of Confinement in QCD

R,Parthasarathy*

Chennai Mathematical Institute
Kelambakkam, Chennai 603 103, India.

Received 20 August 2019

Abstract: The issues of confinement in QCD are reviewed within the frame

work of quantum gauge field theory. Using ’cluster property’ and BRST

charge, the confining potential and observables are discussed. Quarks and

gluons do not have asymptotic states while color singlet (gauge invariant)

combinations have such states, implying that quarks and gluons are confined

and not observable while baryons are observable.

1 Introduction

Gauge quantum field theories are the only quantum field theories relevant to par-
ticle physics. So it will be of physical importance to analyse the structure of these
theories without relying on perturbation theory. This is particularly useful to address
the issue of confinement of quarks (and gluons) in QCD since the confining regime
is in the infra-red region where the QCD coupling is large so that the perturba-
tive methods cannot be reliably employed. While the ultra violet regime involving
short distance behaviour (high momentum) has small coupling strength, pertur-
bative methods operate giving ‘asymptotic freedom’. Asymptotic freedom in non-
Abelian gauge theories [1], in particular in QCD, have been well established [2]. On
the other hand, the long distance region characterized by large coupling strength is
essentially non-perturbative. The confinement of quarks has to be addressed in this
non-perturbative regime. Quantization of non-Abelian theories with large coupling
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strength suffered from gauge fixing procedure, known as Gribov ambiguity [3]. It is
possible to avoid this difficulty by employing ‘background gauge’ [4].

The first assumption we make here is that in the confining regime, the QCD
coupling is a constant, as suggested by Gribov [5].

Gauge quantum field theories have different properties from ordinary field theo-
ries. An example is the Abelian gauge quantum field theory in which the indefinite
metric in the definition of scalar product plays crucial role. In non-Abelian gauge
quantum field theories, the ’cluster property’ does not necessarily hold, although
such a property holds good on Abelian gauge quantum field theory.

The definition of physical space VPhys ⊂ VTotal such that the norm in VPhys is
positive semi-definite, that is, (φ, φ) ≥ 0, φ ∈ VPhys is another distinguishing prop-
erty of gauge quantum field theory. As the matrix elements between two physical
states φ1, φ2;∈ VPhys do not change by adding to φ1 and/or to φ2 states χ ∈ VPhys
with vanishing norm ((χ, χ) = 0), as these are also orthogonal to φ1, φ2 (|(φ, χ)| ≤
|(φ, φ)| 12 |(χ, χ)| 12 by Schwarz inequality, as (χ, χ) = 0, it follows (φ, χ) = 0), it is
convenient to characterize the physical state corresponding to φ by the equivalence
class [φ]. The quotient VPhys = VPhys/V0, V0 = {χ ∈ VPhys; (χ, χ) = 0} will be called
the space of physical states in which the scalar product is positive and definite.

We now consider observability condition in general. In a local gauge quantum
field theory, with local symmetry group G unbroken, its generators Qi commute
with all the observables. A necessary condition for an operator A to describe an
observable is (φ, [Qi, A]φ) = 0. Consequently, in the Abelian gauge theory, Q corre-
sponds to electric charge and so (ψi, Q

iψi) = qi(ψi, ψi) is an observable. However,
for QCD, we know [Qa, Qb] = ifabcQc and so color charges cannot be observed. A
deeper issue is whether a non-Abelian gauge quantum field theory has asymptotic
particle like states with non-vanishing color. Such non-perturbative characteristic
questions can be addressed now. The non observability of quarks means that quarks
are associated with a basic set of fields ψi(x) but no particle like asymptotic states
exist with quark quantum numbers. The validity of the ‘cluster property’ becomes
important in the existence of the asymptotic limit of a field operator. The failure of
the ‘cluster property’ for the quark fields ψi(x) is strictly related to the fact that the
states ψi|0〉 do not have an asymptotic limit belonging to VPhys. So the question of
a mechanism of confinement is the failure of the ’cluster property’ of gauge quantum
field theory [6].

In this review, two aspects of confinement in QCD will be focused. (1) The
confining potential, such as linear potential, is plausible within the general frame
work. (2) The observables in QCD in general will be gauge invariant. This implies
that the (free) quarks can not be observed; quarks are confined while proton and
neutron will be observed.
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2 Quantum Yang-Mills theory

QCD is an SU(3)c unbroken gauge theory whose classical Lagrangian density is

L = −1

4
F a
µνF

µνa + ψ̄γµ(i∂µ + Aaµt
a)ψ, (1)

with F a
µν = ∂µA

a
ν−∂νAaµ+gfabcAbµA

c
ν and ta’s are generators of SU(3). The classical

equation of motion is

Dab
µ F

µνb = −gjνa, (2)

where Dab
µ = ∂µδ

ab + gfacbAcµ. By rewriting the classical equation of motion as

∂µF
µνa = −g{jνa + facbAcµF

µνb} ≡ −gJνa, (3)

we have a current Jνa = jνa+facbAcµF
µνb which is ordinarily conserved, i.e., ∂νJ

νa =
0. Jνa contains a piece facbAcµF

µνb, a contribution from the gauge fields. Such a
piece is absent in electromagnetic theory. The equation of motion from the quantum
YM theory [7,8] is

Dµ abF b
µν = ∂νB

a − gjaν − ig(∂ν c̄× c)a,
= ∂νB

a − gjaν − igfabc∂ν c̄bcc, (4)

where c’s are the Faddeev - Popov ghost fields and Ba’s are the Lagrange multiplier
fields in the gauge fixing part of the Lagrangian density and satisfy

Dµ ab(∂µB
b) = igfabc∂µc̄

b (Dµcdcd). (5)

The BTST transformations

δAaµ = [iQB, A
a
µ] = Dab

µ c
b,

δψα = [iQB, ψ
α] = igca(ta)αβψ

β.

δBa = [iQB, B
a] = 0,

δca = [iQB, c
a] = −g

2
fabccbcc,

δc̄a = [iQB, c̄
a] = iBa, (6)

where the BRST charge QB is given by

QB =

∫
d3x {Ba(Dab

0 c
b)− Ḃaca + i

g

2
fabc ˙̄c

a
cbcc} = Q†B. (7)
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It can be shown

δF a
µν = gfacdF c

µνc
d, (8)

and writing δF a
µν = [iQB, F

a
µν ], it follows that

[QB, F
a
µν ] = igfadccdF c

µν 6= 0. (9)

This property will be useful later when we discuss ’cluster property’.

The quantum equation of motion can be written as [7]

∂µF a
µν = −gJaν + {QB, D

ab
ν c̄

b}, (10)

where

Jaµ = jaµ + fabcAνbF c
νµ − {QB, f

abcAbµc̄
c}+ ifabc(∂µc̄

b)cc, (11)

and

[QB, J
a
µ ] = −i∂νfabccbF c

µν . (12)

3 Physical subspace

The total state vector space V in a covariant formulation of gauge theory necessarily
contains negative norm states, that is, V has an indefinite metric. As the positivity
of the metric is vital to the probabilistic interpretation, we need to define suitable
subspace of V in such a way that the physical S-matrix, defined by restricting the
total S-matrix to the physical subspace is unitary.

In non-Abelian gauge theory, the physical subspace VPhys ⊂ V is specified by the
condition [9]

QB|Phys〉 = 0; VPhys = {|φ〉;QB|φ〉 = 0}. (13)

As QB generates BRST transformations which are infinitesimal local gauge transfor-
mations, the above condition essentially expresses the gauge invariance of the phys-
ical states belonging to VPhys. The vacuum is annihilated by QB and so |0〉 ∈ VPhys.

4 Observables in quantum YM theory

The physical space contains states with zero norm. We define VPhys/V0 and any
zero norm state |χ〉 in V0 is orthogonal to states in VPhys. The transition probability
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between physical states T (φ1, φ2) = |(φ1, φ2)|2 has the property T (φ1, φ2) = T (φ1 +
χ1, φ2 +χ2). Besides transition probability, physical quantities to be measured must
be such that any state ∈ V0 should make no physical effect in the measurement. To
ensure this, if a zero norm state |χ〉 ∈ V0 were transformed by a physical quantity
R in to |χ; 〉 = R|χ〉, such that (φ, χ′) = (φ,Rχ) 6= 0 for some |φ〉 ∈ VPhys, then the
measurement of R could not be described consistently. So, it is required that the
physical quantity to satisfy (φ,Rχ) = 0 - providing a definition for observable. As an
example: consider Pµ. As QB is translation invariant, [QB, Pµ] = 0. Let Pµ|φ〉 = |ψ〉.
Here |φ〉 ∈ VPhys ; QB|φ〉 = 0. So, QB|ψ〉 = QBPµ|φ〉 = Pµ(QB|φ〉) = 0. So
|ψ〉 ∈ VPhys. Since |χ〉 ∈ V0 is orthogonal to |φ〉 and since |ψ〉 ∈ VPhys, it follows

that (χ, ψ) = 0. So Pµ is an observable. We say that if an operator Ô commutes

with QB, then Ô is an observable.

5 Confining potential and cluster property

In describing the potential mediated by fields, we need a potential not decreasing at
infinity to confine quarks. This implies a failure of cluster property for the vacuum
expectation value of two point function. We will elaborate this. The cluster property
is

〈0|φ1(x1)φ2(x2)|0〉|x1−x2|→∞ → 〈0|φ1(x1)|0〉 〈0|φ2(x2)|0〉. (14)

Araki, Hepp and Ruelle [10] proved that the cluster property should hold in a Lorentz
covariant local field theory with unique vacuum. In this case, the potential cannot
be linearly rising. This produces a conflict in QCD as we expect a linear confining
potential [11]. However, in non-Abelian gauge theory, a possible failure of cluster
property has been pointed out by Strocchi [12]. In order to understand this, we
recall the inequality derived by Araki, Hepp and Ruelle [10], on the assumption
of covariance under translation, local commutativity, uniqueness of vacuum and
spectral condition, that

|〈0|φ1(x1)φ2(x2)|0〉 − 〈0|φ1(x1)|0〉 〈0|φ2(x2)|0〉| ≤ c′[ξ]−2[ξ]2N(1 +
|ξ0|
[ξ]

), (15)

when there is no mass gap. Here ξ = x1 − x2 and N is a non-negative inte-
ger depending upon φ’s. We first consider Abelian gauge theory (QED) where
there is no mass gap. The role of QB is played by B(x) = −∂µAµ(x). Using
[Aµ(x), Aν(y)] = −iηµνD(x− y), we have [∂µAν(x), ∂λAλ(y)] = −i∂µ∂ληνλD(x− y)
and [∂νAµ(x), ∂λAλ(y)] = −i∂ν∂ληµλD(x− y). It then follows that

[Fµν(x), B(y)] = 0, (16)
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and so Fµν(x) in QED is an observable. Next, using

〈0|Aµ(x)Aν(y)|0〉 = ηµνF (x− y) + ∂µ∂νG(x− y), (17)

we have

〈0|Fµν(x)Fσρ(y)|0〉 = −{ηµρ∂ν∂σ − ηνρ∂µ∂σ − ηµσ∂ν∂ρ + ηνσ∂µ∂ρ}F (x− y). (18)

Introduce now

F (f) =

∫
d4xFµν(x) fµν(x), (19)

where fµν(x) is some function in R4. Then the state F (f)|0〉 will be in VPhys since
Fµν(x) is an observable. Therefore

〈0|F †(f)F (f)|0〉 ≥ 0. (20)

This implies that the Fourier transform of 〈0|Fµν(x)Fρσ(y)|0〉 is a measure. So
N = 0. Thus, F (x − y) → [x − y]−2, which → 0 as |x − y| → ∞. Therefore the
cluster property holds good and the potential also → 0 as |x− y| → ∞. Thus, the
decrease of the potential is associated with the cluster property and in local field
theory satisfying Wightman [13] axioms, the slowest decrease at infinity is like 1

r
,

the Coulomb potential.

In the case of non-Abelian theory, like QCD, there is no mass gap. In here we
have

[iQB, F
a
µν ] = ifabccbF c

µν , (21)

and so F a
µν is not an observable; gluon fields are not observables. While the local

charge in QED is an observable, in QCD the local BRST charges are not observable
as [Qa.Qb] = ifabcQc. As a consequence of (9) or (21), the state

F (f)|0〉 =

∫
d4xF a

µν(x)fa µν(x)|0〉, (22)

will not be in VPhys. This implies that the Fourier transform of 〈0|F a
µν(x)F b

ρσ(y)|0〉
will not be a measure and so N 6= 0. The cluster property fails. Thus, the possibility
of linear confining potential (not vanishing at spatial infinity) and quantum field
theory are compatible. The failure of the cluster property is thus related to the
result that the quark and gluon states do not have asymptotic limit.
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6 Gauge invariant states

A quark field with color index α satisfies (second relation in (6))

δψα = [QB, ψ
α] = gca(tα)αβψ

β. (23)

Since [QB, ψ
α] 6= 0, ψα is not an observable. Let

|α〉 = ψα|0〉, (24)

from which it follows that QB|α〉 6= 0 and so |α〉 /∈ VPhys. As the S-matrix is defined
for physical states, |α〉 cannot be an asymptotic state. This implies confinement of
quarks. Let us now consider a color singlet combination

εαβγψαψβψγ , (25)

We will see this state to be asymptotic state. We then have

δBRST (εαβγψαψβψγ) = εαβγ
(
(δψα)ψβψγ + ψα(δψβ)ψγ + ψαψβ(δψγ)

)
,

= gcaεαβγ
(

(ta)αδψ
δψβψγ + ψα(ta)βδψ

δψγ + ψαψβ(ta)γδψ
δ
)
.

(26)

By explicitly computing this for a = 1 to 8 with Gell-Mann SU(3) matrices [14] for
ta, we find that δBRST (εαβγψαψβψγ) = 0. which implies

[QB, ε
αβγψαψβψγ] = 0. (27)

Consequently, the operator εαβγψαψβψγ is an observable which represents baryon.
Also, the state εαβγψαψβψγ|0〉 has the property of being annihilated by QB and so
∈ VPhys. So, this is an asymptotic state and observable. This state represents the
baryon.

7 Summary

We have considered the notion of confining potential and observables in the general
framework of non-Abelian gauge field theory (QCD). Quarks and gluons as such are
not observable as asymptotic states. The color singlet representing baryon (similar
reasoning holds good for mesons) are observable as asymptotic states. Such color
singlet states are gauge invariant. This is consistent with confinement property of
QCD.
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