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Abstract: The concept of phase-space in quantum mechanics is explained

and used to derive in a simple way the old formulae, such as Planck’s law of

radiation, the Fermi energy of electrons or nucleons in a system and Debye’s

formula for specific heat of solids, given in standard textbooks. The simplicity

in deriving some of the old formulae will be useful to the graduate and post-

graduate students in Science and Engineering.

1 Introduction

Classical Physics is based on the dichotomy of the universe - particles and waves.
Separate theories have been developed for studying the particles in motion and for
wave propagation. The quantum theory has unified particles and waves and is based
on the wave-particle duality.

The birth of the Quantum Theory of light can be traced to the year 1900 when
Planck presented his law of Black Body Radiation. He found the inadequacy of
classical physics to explain the experimental findings of the spectral distribution of
black body radiation at any given temperature and had to invoke an hypothesis that
the radiation is absorbed or emitted in discrete quanta by the walls of the container.
Einstein, in the year 1905, extended Planck’s hypothesis and made a bold suggestion
that light is made up of discrete quanta in order to explain the photoelectric effect.
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Louis de Broglie, in the year 1924 in his doctoral thesis, argued that if light can
exhibit both wave and particle behaviour, why not particles exhibit wave behaviour?
Soon, the experiments of Davisson and Germer and Thompson revealed that elec-
trons do exhibit interference and diffraction phenomena just as waves.

We have come a along way, unifying the concept of particles and waves and ac-
cepting the particle-wave duality of both particles and waves. So, the concept of
phase-space [1] is applicable to both particles and waves. But still in many text-
books [2 - 9], Planck’s law of radiation, the energy distribution of Fermions in a
bound system and Debye’s theory of specific heat of solids are presented using the
state of knowledge that existed at the time of their original creation. In this article,
it is emphasized that they can be presented in a simple alternative way using the
state of knowledge available today.

It is pointed out that the concept of phase-space [1] simplifies the derivation
of some of the old formulae in Physics. Besides, the discussion of those formulae
and consequent developments in the several subjects are also presented for the sake
of completeness. Since these topics are studied in the degree and postgraduate
degree courses in Science and Engineering, this review article will be beneficial to
the students and faculty members in those institutions conducting these courses.

2 Concept of phase-space

The state of a particle is specified by specifying both its position r (= xi+ yj + zk)
and momentum p (= pxi + pyj + pzk), where i, j,k denote the unit vectors in
Cartesian coordinate system. The phase-space is the product of ordinary space and
momentum space. It is a six-dimensional space in which the state of a particle can
be represented.

In classical physics, both the spatial position and the momentum of a particle
can be determined accurately and so the state of a particle can be represented by
a point in the phase-space. In Quantum Mechanics, both the spatial position (r)
and the momentum (p) of the particle cannot be measured accurately since they
are canonically conjugate variables. According to Heisenberg’s uncertainty principle
∆x∆px ∼ h, ∆y∆py ∼ h, ∆z∆pz ∼ h, where h denotes the Planck constant. So, in
Quantum Physics, the state of a particle cannot be represented by a point but only
by a cell of finite volume h3 in the phase-space diagram. So, the number of states
available for the particle is given by [1]

Number of states available for the particle =
Volume of phase space

h3
. (1)

Let us now enumerate the number of states Z(p) available for a particle with



28 V. Devanathan

momentum lying between p and p + dp, confined within a volume V .

Z(p)dp =
V 4πp2dp

h3
. (2)

From this, we obtain the density of states available for a particle in the momentum
range p and p + dp.

z(p)dp =
Z(p)dp

V
=

4πp2dp

h3
. (3)

If we invoke the particle-wave duality, engrained in Quantum Mechanics, the
density of states can be expressed in terms of wavelength λ or wave number k or

frequency ν. If λ is the de Broglie wavelength, then p =
h

λ
and dp = − h

λ2
dλ.

Substituting these in Eq. (3), we get

z(λ)dλ =
4π

h3

(
−h

3

λ4
dλ

)
= −4π

λ4
dλ.

The negative sign in the above equation merely indicates that the density of states
decreases with increase of wavelength; whereas the density of states in terms of mo-
mentum p increases with increase of momentum. So, we can ignore the negative
sign in any discussion that follows, since λ occurs in the denominator and it auto-
matically takes care of the decrease in density of states with increase of wavelength.
So, we can rewrite the above equation, omitting the negative sign.

z(λ)dλ =
4π

λ4
dλ. (4)

In terms of the wave number k (k =
2π

λ
), the momentum p = ~k, where ~ = h/(2π)

and consequently, the density of states becomes

z(k)dk =
4π

h3
~3k3dk =

k3

2π2
dk. (5)

Since p =
h

λ
=

hν

v
, where ν denotes the frequency and v denotes the velocity,

the density of states z(ν) in terms of the frequency ν is obtained by substitution
in Eq. (3).

z(ν)dν =
4πν2

v3
dν. (6)

For photons, v = c and so the density of states for photons is

z(ν)dν =
4πν2

c3
dν. (7)
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Equations (3) - (6) are expressions for the density of states given in different
variables : momentum p, wavelength λ, wave number k and frequency ν. All of
them are equally applicable for both particles and waves since quantum
mechanics emphasizes particle-wave duality. Eq. (7) is applicable only to
photons that are propagated with velocity c.

3 Planck’s law of radiation

Max Planck in the year 1900 deduced the radiation law using classical physics but
introducing only an additional concept that the radiation is absorbed or emitted
by the walls of the black body in integral multiples of hν, where h is a constant,
known as Planck’s constant. He obtained an expression for the spectral distribution
of energy as a function of temperature. That is known as Planck’s law of black body
radiation. In most of the standard textbooks, the same old derivation is given.

It is now an established knowledge that radiation or light is of quantal nature,
each quantum carrying an energy hν. It is also known that photons obey Bose-
Einstein statistics, from which one can find the probability of occupation of a state.

From Eq. (7), we obtain the number of states available for photons of frequency
lying between ν and ν + dν in unit volume.

z(ν)dν =
4πν2

c3
dν.

Photons are Bosons and so they should obey the Bose-Einstein statistics. The
probability of occupation of a state according to Bose-Einstein statistics is

1

ehν/(kBT ) − 1
, (8)

where kB denotes the Boltzmann constant and T the absolute temperature. That
is how S.N. Bose argued and derived Planck’s law of radiation.

Since each photon can have two spin states (two transverse polarizations) for
each frequency or energy state, two photons can occupy each frequency state. Taking
into account the occupation probability (8) for each frequency state, we obtain the
number of photons per unit volume with frequency lying between ν and ν + dν.

n(ν)dν = 2× 4πν2dν

c3
× 1

ehν/(kBT ) − 1
=

8πν2

c3
1

ehν/(kBT ) − 1
dν. (9)

Multiplying the number density of photons by its energy hν, we obtain Planck’s
formula for the energy density of photons in an enclosure in the frequency range
lying between ν and ν + dν in thermodynamic equilibrium at temperature T .

u(ν)dν =
8πν2

c3
hν

ehν/(kBT ) − 1
dν. (10)
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One can also write the spectral distribution in terms of angular frequency ω = 2πν
or wavelength λ.

u(ω)dω =
ω2

π2c3
~ω

e~ω/(kBT ) − 1
dω. (11)

u(λ)dλ =
8π

λ5
hc

ehc/(λkBT ) − 1
dλ. (12)

In Eq. (11), the energy of the photon hν is written as ~ω, where ~ = h/(2π).

Fig 1:Variation of spectral energy density u(λ) with wavelength λ in nano-meters. The

wavelength λmax at which u(λ) is maximum is observed to shift towards shorter wave-

length as T increases.

The variation of spectral energy distribution u(λ) with wavelength λ is shown in
Fig. 1. for various temperatures T . It is found that u(λ) increases with λ, reaches a
maximum at certain wavelength λmax and then falls off. The higher the temperature,
the higher is the corresponding u(λ) curve but the λmax shifts towards the shorter
wavelength as T increases, according to Wein’s displacement law λmaxT = constant.
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For the sake of completeness, it is shown in Appendix A how Planck’s formula
reduces to Releigh-Jeans formula in the limit of long wavelegths and Wein’s formula
for short wavelengths. What is experimentally observed is the spectral radiant
energy emitted per second per unit area of the black body and also the total energy
emitted per second as given by Stefan’s law. A discussion on these aspects is also
included in the Appendix A.

4 Free electron quantum theory of metals

A metal can be considered to have a lattice structure with atoms located at the
lattice points. The valence electrons are loosely bound and so they get detached
and move freely throughout the metal whereas the residual positive ions are located
at the lattice points.

Thus a metal is visualized to consist of positive ions located at the lattice points
with the free movement of valance electrons within a volume V of the metal. Since
electrons are confined within a volume V , their energy levels will be discrete.

The number of states available for the electron with momentum lying between p
and p+ dp is given by Eq. (2).

Z(p)dp =
V 4πp2dp

h3
.

This can be expressed in terms of the kinetic energy of electron E = p2/(2m),
where m denotes the mass of the electron. Substituting p =

√
2mE in the above

expression, we get the number of states lying between energy E and E + dE.

Z(E)dE =
4πV

h3
(2mE)1/2mdE =

4
√

2 πV m3/2E1/2dE

h3
. (13)

Electrons are spin-12 particles and so each electron can have two spin states,
one with spin-up and another with spin-down. Electrons obey the Pauli-exclusion
principle that no two identical particles can occupy the same state. If EF is the
maximum energy of the electron, then the total number of electrons that can be
accommodated in volume V is

N = 2×
∫ EF

0

Z(E)dE =
8
√

2 πV m3/2

h3

∫ EF

0

E1/2dE

=

(
16
√

2 πV m3/2

3h3

)
E

3/2
F . (14)

In terms of the electron density n = N/V , the Fermi energy can be written as

EF =

(
3h3n

16
√

2πm3/2

)2/3

=
h2

2m

(
3n

8π

)2/3

(15)
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It is a common practice to use ~ = h/(2π) instead of h. In terms of ~, the Fermi
energy can be written as

EF =
~2

2m
(3π2n)2/3. (16)

If there are N electrons confined within a volume V , then the ground state of
the system is one in which all the energy levels up to EF are filled. This ground
state will correspond to 0o K.

4.1 Fermi distribution function

The Fermi distribution function is given by

f(E, T ) =
1

e(E−EF )/(kBT ) + 1
, (17)

where E is the energy of the state, EF the Fermi energy and kB, the Boltzmann
constant. It gives the probability of occupation of the state with energy E at absolute
temperature T . For T = 0,

f(E, T = 0) =

{
1, if E < EF
0, if E > EF

. (18)

At T = 0o K, all the energy states below EF are filled and all the energy states above
EF are empty. With the increase of temperature, the states with energy levels just
below the Fermi level are depleted and the states immediately above the Fermi levels
are occupied as shown in Fig.2.

. . . . . . . . . . . . . . . . . . . . . .

1

1
2

f(E, T )

EF E

T = 0

T1
T2 > T1

↙
←−
←−

0

Fig. 2: Fermi distribution as a function of temperature

4.2 Fermi energy of metals

The Fermi energy depends on the electron density n, which, in turn, depends on the
valence of the metal and also on the crystal structure. The Fermi energy is different
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for different metals and so their properties also vary.

Let us illustrate this point by considering four mono-valent metals, Sodium,
Copper, Silver and Gold, one di-valent metal Magnesium and one tri-valent metal
Aluminium with the following electron configurations:

Sodium: 11Na: 1s2 2s2 2p6 3s
Copper: 29Cu: 1s2 2s2 2p6 3s2 3p6 3d10 4s
Silver: 47Ag: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s
Gold: 79Au: 1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 5d10 5s
Magnesium: 12Mg: 1s2 2s2 2p6 3s2

Aluminium: 13Al: 1s2 2s2 2p6 3s2 3p

Each of the metals, Sodium, Copper, Silver and Gold has one electron in the out-
ermost s-orbit which get detached to form the free electron cloud shared by the
entire metal. In Magnesium, there are two s-electrons which are loosely bound in
the outermost orbit and hence get detached to form the valence electron cloud. In
Aluminium, two s-electrons and one p-electron in the outermost orbits contribute
to the free valence electrons. It is possible to find the free electron density n in each
of these metals from a knowledge of their crystal structure.

Sodium has a bcc structure, whereas Copper, Silver, Gold and Aluminium have
fcc structure and Magnesium has hcp structure. From a knowledge of their lattice
constants, one can determine the number of atoms in unit volume natom. Given the
valency, one can find the number of electrons per unit volume (n = valency×natom).

bcc solid
In a Body-Centered Cubic (bcc) solid, there are two atoms per unit cell of volume

a3, where a denotes the lattice constant. So, the number of atoms per unit volume
is equal to 2/a3. That is natom = 2/a3. If we multiply natom by the valency of atom,
we get the number of free electrons per unit volume: n = valency × natom.

For bcc solid: natom =
2

a3
; n = valency × natom. (19)

fcc solid
In a Face-Centered Cubic (fcc) solid, there are four atoms per unit cell of volume

a3, where a denotes the lattice constant. So, the number of atoms per unit volume
is equal to 4/a3. That is natom = 4/a3. If we multiply natom by the valency of atom,
we get the number of free electrons per unit volume: n = valency × natom.

For fcc solid: natom =
4

a3
; n = valency × natom. (20)
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hcp solid
In a Hexagonal Close Packed (hcp) structure, the solid has six atoms in a unit

cell of volume
3
√

3

2
a2c where a and c are two lattice constants defining the hcp

structure. So, the number of atoms per unit volume is equal to
4√
3a2c

. That is

natom =
4√
3a2c

. If we multiple natom by the valency of atom, we get the number of

free electrons per unit volume: n = valency × natom.

For bcc solid: natom =
4√
3a2c

; n = valency × natom. (21)

Given the lattice structure, lattice constants and valency of the metals, one can
determine the density of atoms (natom) and the density of valence free electrons (n)
using Eqs. (19) - (21) and they are given in a tabular column (Table 1).

Table 1: Lattice structure, lattice constants, atomic density, valency, valence electron

density and Fermi energy of some selected metals

Crystal Lattice Atomic Valence Fermi
Metal structure constant density Valency Electron density energy

in n.m. per m3 per m3 in eV

Sodium bcc a = 0.4281 2.65× 1028 1 2.65× 1028 3.23

Copper fcc a = 0.3615 8.50× 1028 1 8.50× 1028 7.05

Silver fcc a = 0.4086 5.85× 1028 1 5.85× 1028 5.50

Gold fcc a = 0.4080 5.89× 1028 1 5.89× 1028 5.52

Magnesium hcp

{
a = 0.3209
c = 0.5210

4.30× 1028 2 8.60× 1028 7.12

Aluminium fcc a = 0.4049 6.02× 1028 3 18.06× 1028 11.63

Our aim is to find the Fermi energy of valence electrons in any metal. The Fermi
energy EF depends on the free electron density n, which, in turn, depends on the
crystal structure and the valency of the metal. From Eq.(16), we have

EF =
~2

2m
(3π2n)2/3 =

(
~2

2m
(3π2)2/3

)
n2/3. (22)

In the above Equation, we have separated the constant part from the only variable
n which depends on the metal. Substituting the values

~ =
h

2π
= 1.055× 10−34 Js

Electron mass m = 9.109× 10−31 Kg
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we get
EF = 58.473× 10−39 n2/3 Joule.

This can be expressed in eV, using the conversion factor 1 eV= 1.602× 10−19 J.

EF = 36.50× 10−20 n2/3 eV, (23)

where n represents the number of valence electrons per cubic meter. The results are
tabulated in Table 1.

5 Debye’s theory of specific heat of solids

Einstein considered the solid to consist of molecules at lattice points which exe-
cute simple harmonic vibrations about their equilibrium positions. This will set up
standing waves in solid. So, Debye considered the solid as a continuous medium
wherein standing waves of different modes are set up due to molecular vibrations.
Since particles and waves are treated alike in the phase-space concept, the number
of modes of standing waves can be obtained from Eq. (5) in terms of the wave
number k or equivalently by Eq. (6) in terms of frequency ν and velocity v of wave
propagation. If V is the volume of the solid, then the number of modes of stand-
ing waves in terms of frequency ν and velocity v of wave propagation, according to
Eq. (6), is

Z(ν)dν =
V 4πν2

v3
dν. (24)

Since both longitudinal and transverse waves are possible in a solid, we should
take into account one mode for longitudinal wave and two modes for transverse
waves. It is also possible that the longitudinal and transverse waves may be prop-
agated with different velocities vl and vt. Taking these factors into account, we
get

Z(ν)dν = 4πV

(
1

v3l
+

2

v3t

)
ν2dν. (25)

The quantum analogue of such a wave is known as phonon and so these waves are
often referred to as phonons in recent literature.

5.1 Debye’s postulate

If the solid contains N atoms, then 3N modes of linear vibrations are possible.
Debye made a postulate that the total number of modes of standing waves in the
solid should be equal to the 3N modes of vibrations that are possible in the solid.
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Let the upper limit of the frequency of the wave modes be ν
D

, the Debye frequency.
It follows that ∫ νD

0

Z(ν)dν = 4πV

(
1

v3l
+

2

v3t

)∫ νD

0

ν2dν = 3N. (26)

This yields the Debye frequency ν
D

.

ν3
D

=
9N

4πV

(
1

v3l
+

2

v3t

)−1
.

ν
D

=

(
9N

4πV

)1/3(
1

v3l
+

2

v3t

)−1/3
. (27)

One can obtain a rough estimate of the Debye frequency. Assuming that N/V = 1028

per m3 and the velocity of propagation of waves is approximately equal to that of
sound waves vl = vt = 1000 m/sec, we obtain

ν
D

=

(
9× 1028

4π

)1/3(
3

10003

)−1/3
≈ 1012Hz.

5.2 Calculation of specific heat

Let us associate each mode of wave with a corresponding harmonic oscillator of
the same frequency. It can be shown that the mean energy of a linear harmonic
oscillator with frequency ν is

Ē =
hν

ehν/(kBT ) − 1
.

Associating each wave mode given by Eq. (25) with the corresponding energy of
the linear harmonic oscillator, the total vibrational energy of the solid is obtained
by integrating over the frequency range from zero to ν

D
.

E =

∫ νD

0

Z(ν)

(
hν

ehν/(kBT ) − 1

)
dν

= 4πV

(
1

v3l
+

2

v3t

)∫ νD

0

(
hν3

ehν/(kBT ) − 1

)
dν. (28)

From Eq. (27), we find

4πV

(
1

v3l
+

2

v3t

)
=

9N

ν3D
.

Let us also make the following substitutions:

x =
hν

kBT
; xm =

hν
D

kBT
.



The Concept of Phase-Space in Quantum Mechanics 37

Then, Eq. (28) becomes

E = 9NkBT

(
kBT

hν
D

)3 ∫ xm

0

x3

ex − 1
dx. (29)

The specific heat of solid CV is given by CV =
dE

dT
. One can obtain analytical

expressions for CV in the limiting cases of large T and small T .
It is useful to define Debey temperature θD by the relation

kBθD = hν
D
, (30)

such that

θD =
hν

D

kB
and xm =

hν
D

kBT
=
θD
T
. (31)

5.2.1 At very high temperatures T � θD

Since x = hν
kBT
� 1, ex ≈ 1 + x. Eq. (29) reduces to

E = 9NkBT

(
kBT

hν
D

)3 ∫ xm

0

x2dx

= 9NkBT

(
T

θD

)3
x3m
3

= 3NkBT.

CV =
dE

dT
= 3NkB. (32)

Equation (32) is obtained by substituting the value of xm from Eq. (31). Thus, at
very high temperatures, we get the classical result of 3NkB for the specific heat of
solid Cv = dE

dT
.

5.2.2 At very low temperatures T � θD

At very low temperatures, the upper limit of integration xm →∞. Using the value
of the standard integtral, ∫ ∞

0

x3

ex − 1
dx =

π4

15
,

in Eq. (29), we get

E = 9NkBT

(
kBT

hν
D

)3(
π4

15

)
=

3

5
π4NkB

T 4

θ3D
. (33)
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Differentiating (33) with respect to temperature T , we obtain the specific heat of
solid at very low temperature.

CV =
dE

dT
=

(
12

5

)
π4NkB

(
T

θD

)3

. (34)

This is the famous Debye’s T 3 law which is found to yield excellent agreement with
experimental results for many solids at very low temperatues.

6 The Fermi Gas Model of the Nucleus

Here, we consider the nucleus as a sphere of volume V consisting of A non-interacting
nucleons. Nucleons are fermions and they obey Pauli exclusion principle. No two
identical fermions can occupy the same state. The number of states available for
nucleons with momentum lying between p and p = dp is given by Eq. (2) from
phase-space consideration [1].

Z(p)dp =
V 4πp2dp

h3
. (35)

Each state can be occupied by 4 nucleons, proton with spin up and spin down and
neutron with spin up and down. So, the total number of nucleons that can be
accommodated in a nucleus of volume V with Fermi momentum pF (the maximum
momentum) is

A =
4V

h3

∫ pF

0

4πp2dp =
4V

h3

(
4πp3F

3

)
. (36)

This can be expressed in terms of Fermi energy EF = p2F/(2M), where M denotes
the nucleon mass. This yields the nuclear density (number of nucleons per unit
volume of the nucleus) n = A/V .

n =
A

V
=

16πp3F
3h3

=
32
√

2πM3/2

3h3
E

3/2
F . (37)

In a nucleus, the nuclear density is a constant and so, the Fermi energy is the same
for all nuclei.

The Fermi gas model for the nuclei is of limited validity, since the number of
nucleons even in heavy nucleus is very small and is of the order of 200 only. Besides
the nucleons within the nucleus are tightly bound with a binding energy of the order
of MeV. In spite of the limited validity, the Fermi gas model for the nucleus is used
to find some of the bulk properties of nuclei [1].
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Appendix A

It can be shown that Planck’s radiation law reduces to Raleigh-Jeans law at high
temperatures and Wein’s law at low temperatures. From Wein’s law, one can obtain
Wein’s displacement law. One can also obtain the total energy density by integrat-
ing the spectral energy density u(ν) over all frequencies.

What is experimentally observed is the spectral distribution of energy emitted
in the black body radiation and the total energy emitted. This leads to Stefan’s law
and the determination of Stefan’s constant.

Raleigh-Jeans formula

In the limit of long wavelegths, the exponential function can be approximated.

ehc/(λkBT ) −→ 1 +
hc

λkBT
.

Substituting this in Eq: (12), we obtain the Raleigh-Jeans formula

u(λ) =
8πkBT

λ4
. (A.1)

Wein’s formula

In the limit of short wavelengths,

ehc/(λkBT ) � 1.

Hence
ehc/(λkBT ) − 1 ≈ ehc/(λkBT ).

Substituting this in Eq. (12), we obtain Wein’s formula.

u(λ) =
8πhc

λ5
e−hc/(λkBT ) =

A

λ5
e−B/(λT ), (A.2)

where A and B are two constants.

A = 8πhc; B =
hc

kB
. (A.3)
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Wein’s displacement law

Given Eq. (A.2), one can find the wavelength at which u(λ) is maximum, using the
condition that duλ

dλ
= 0.

du(λ)

dλ
= A

(
− 5

λ6

)
e−B/(λT +

A

λ5
d

dλ

(
e−B/λT

)
= 0. (A.4)

Since
d

dλ

(
e−B/(λT )

)
=

B

Tλ2
e−B/(λT ),

we get the condition for the wavelength λmax, at which the energy density is maxi-
mum.

λmaxT =
B

5
=

hc

5kB
= constant. (A.5)

Substituting the values h = 6.625 × 10−34 J sec, c = 2.998 × 108 m/sec, kB =
1.38× 10−23 J/K, we can determine the constant.

λmaxT =
hc

5kB
= 2.88× 10−3 m.K. (A.6)

According to Eqs. (A.5) and (A.6), λmaxT is a constant and this is known as Wein’s
displacement law.

Total energy density integrated over all frequencies

If the spectral energy density u(ν) given by Eq. (10) is integrated over all the
frequencies, we get the total energy density in the cavity.

U =

∫
u(ν)dν =

8πh

c3

∫ ∞
0

ν3

ehν/(kBT ) − 1
dν. (A.7)

Let us put y = hν/(kBT ). Then dy = h/(kBT )dν. Now the integral becomes

U =
8πh

c3

(
kBT

h

)4 ∫ ∞
0

y3

ey − 1
dy. (A.8)

Substituting the value of the standard integral∫ ∞
0

y3

ey − 1
dy =

π4

15
,

we get

U =
8π5k4B
15c3h3

T 4 = αT 4, (A.9)
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where α =
8π5k4B
15c3h3

. Substituting the values of kB, c, h, we get

α = 7.55× 10−16 Jm−3K−4.

Thus, we find that the total energy density integrated over all the wavelengths is
proportional to the fourth power of the absolute temperature.

Energy emitted per second per unit area of black body

We have calculated the spectral energy density of waves u(ν) in the cavity. Then
the spectral radiant energy emitted per second per unit area of the black body is
cu(ν), where c is the velocity of light. This is emitted uniformly in all directions. If
Eν is the spectral energy emitted in frequency ν per unit solid angle, then

4πEν = cu(ν) or Eν =
cu(ν)

4π
. (A.10)

What is experimentally observable is the spectral radiant energy emitted by the
black body. So, let us write down Planck’s expression for the spectral radiant energy
emitted per second per unit solid angle by unit area of the black body .

Eνdν =
cu(ν)

4π
dν =

2ν2

c2
hν

ehν/(kBT ) − 1
dν. (A.11)

Eωdω =
cu(ω)

4π
dω =

ω2

4π3c2
~ω

e~ω/(kBT ) − 1
dω. (A.12)

Eλdλ =
cu(λ)

4π
dλ =

2c

λ5
hc

ehc/(λkBT ) − 1
dλ. (A.13)

Total radiant spectral energy emitted per second per unit
area in the forward direction

If Eν is the radiant energy emitted per unit area normal to the surface per second,
then the total energy Eν emitted per unit area per sec in the forward direction is

Eν =

∫
Eν cos θdΩ

= 2π

∫ π/2

0

Eν cos θ sin θdθ

= 2πEν

∫ 1

0

xdx, where x = sin θ

= πEν =
cu(ν)

4
. (A.14)

Equation (A.14) is obtained by substituting (A.10) for Eν .
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Stefan-Boltzmann law

The total energy of all wavelengths radiated per second per unit area by a black
body at absolute temperature T is given by Stefan-Boltzmann law.

E = σT 4, (A.15)

where σ is known as the Stefan constant and it is found experimentally to yield

σ = 5.67× 10−8 Watts m−2K−4.

Let us now deduce Stefan’s law from Planck’s radiation formula and calculate the
Stefan constant.

We have already derived an expression (A.9) for the total energy density U in
the cavity of the black body and we have found it proportional to T 4. The total
spectral radiant energy from the unit area of the black body is given by Eq. (A.14).
Integrating over all the frequencies, we obtain the total energy radiated by unit area
of the black body.

E =

∫ ∞
0

Eνdν =
c

4

∫ ∞
0

u(ν)dν =
c

4
U =

c

4
αT 4. (A.16)

Comparing (A.15) and (A.16), we get

σ =
c

4
α = 5.66× 10−8 Watts m−2K−4. (A.17)

This agrees well with the experimental value.
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