
Journal of Chennai Academy of Sciences 3, 55-71 (2020) 55

What every computational
mathematician should know

Dr. Sivaram Ambikasaran∗

Stable Accurate Fast Robust Algorithms & Numerics Group
Department of Mathematics

Indian Institute of Technology Madras

July 7, 2020

Conditioning we fail to see,
Will land us in the sea.

Stability is what one can control,
If not, our errors will swole.
Finite precision arithmetic,

You make math on computers frenetic.

1 Abstract

This exposition is a short note on three of the most important concepts in compu-
tational mathematics.

1. Floating point arithmetic

2. Conditioning of a problem

3. Stability of an algorithm

The three are independent entities that frequently cross paths in designing numerical
algorithms for computational problems.

∗Recipient of Saraswathy Srinivasan Prize: Young Scientist Award in Mathematical Sciences
(2019); Email B: sivaambi@alumni.stanford.edu

56 Sivaram Ambikasaran

2 Floating point arithmetic

Mathematics on computers is a different ball game than pen and paper mathematics.
To get rolling, let’s look at a simple recurrence relation that can be solved by a high
school student.

a1 = a2 = 2.95

an+1 = 10an − 9an−1, ∀n ∈ N and n ≥ 2

With pen and paper (in fact you do not even need one), it is fairly straight for-
ward to see that an = 2.95 for all n ∈ N. Now launch one of the most pop-
ular languages used for computing, MATLAB (You can also try this experiment
in Python/C++/Fortran/R). Let’s try to code up this recurrence and obtain the
answers for first few values of n. Below is the little piece of code (Listing 1).

Listing 1: Recurrence

% Filename: catastrophic_round_off.m

% This solves the following recurrence:

% a(1) = a(2) = 2.95;

% a(n+2) = 10a(n+1) - 9a(n);

% If we had infinite precision, then a(n) would be ’2.95’ for all n.

% Let us look at how finite precision affect this computation.

clear all;

clc;

N = 20; % Number of terms

a = zeros(N,1); % Initialize all a(n) to be zero initially

a(1) = 2.95; % a(1) is set to ’2.95’

a(2) = a(1); % a(2) is set to ’2.95’

for n=1:N-2

a(n+2) = 10*a(n+1)-9*a(n); % Recurrence: a(n+2) = 10a(n+1)-9a(n)

end

a % Display the first N values

The output of the code in Listing 1 is tabulated in Table 1.
As seen from Table 1, a digit is lost with each iteration. Instead of starting with

2.95 as the initial value, if we repeat the experiment with a(1) = a(2) = 2.9375,
there would be no loss of digits. (Why?). To understand this phenomenon, we need
to look at the way numbers are represented on the machine.

Any computer has only finite number of bits to represent real numbers. Hence,
we can only represent finitely many real numbers on a computer and will have to
deal with approximations of the real number system using finite computer represen-
tations. To arrive at a consistent representation of floating point numbers across
different computer architecture, the Institute of Electrical and Electronics Engineers
proposed a standard for representing real numbers (IEEE-754). Any number on the

What every computational mathematician should know 57

Table 1: Digits lost with iteration

Iteration Value Digits lost
1 2.9499999999999993 1
2 2.9499999999999922 2
3 2.9499999999999282 3
4 2.9499999999993527 4
5 2.9499999999941728 5
6 2.9499999999475541 6
7 2.9499999995279858 7
8 2.9499999957518703 8
9 2.9499999617668315 9
10 2.9499996559014825 10
11 2.9499969031133411 11
12 2.9499721280200681 12
13 2.9497491521806118 13
14 2.9477423696255052 14
15 2.9296813266295452 15
16 2.7671319396659051 16
17 1.3041874569931444 17
18 -11.862312887061702 18

58 Sivaram Ambikasaran

machine is represented in binary (base 2) format. To be precise, any normal number
on the machine is represented as

x = ±1.d1d2 . . . ds × 2e

where 1.d1d2 . . . ds is the significand and e is the exponent (both represented using
0’s and 1’s). For example, consider the number 77 in decimal. We have

7710 = 26 + 23 + 22 + 20 = 10011012 = 1.0011012 × 26 = 1.0011012 × 21102

As indicated in Figure 1, there is 1 sign bit, e bits for the exponent and s bits for

· · · · · ·

Sign bit Exponent bit Significand bit

Figure 1: Bits to represent floating point numbers

the significand. We will now list out the general conventions based on IEEE-754
standard.

• Sign bit: 0 indicates +, and 1 indicates −.

• Exponent bit: Since there are e bits for the exponent, there are a total of 2e

values the exponent can take. To represent negative exponents as well, a bias

of 2e−1 − 1 is introduced, i.e., 0 exponent is represented as 0

e−1︷ ︸︸ ︷
111 . . . 12.

• Significand bit: Stores the leading bits in the mantissa apart from the leading
1.

2.1 Normal floating point number

These are represented as

±1.d1d2 . . . ds × 2E

where 2−2e−1 ≤ E ≤ 2e−1−1 (after bias). Note that since normal floating numbers
begin with 1, it suffices to store the s bits after the leading 1.

What every computational mathematician should know 59

Table 2: Floating point representations

Significand

All zeros Non-zero
E

x
p

o
n

e
n
t

All zeros ±0 Sub-normal numbers

All ones ±∞ Not A Number

Else Normal floating point numbers

Table 3: Positive normal floating point number

Mantissa Exponent (without bias) Number

Smallest di = 0 for all i ≤ s 00 . . . 01 22−2e−1

Largest di = 1 for all i ≤ s 11 . . . 10 (2− 2−s)× 22e−1−1

2.2 Sub-normal floating point number

If all the bits in the exponent are zeros, the machine interprets this number either
as zero or a sub-normal floating point number. When the significand is non-zero,
then such a number is called as a sub-normal number. These numbers need to be
interpreted as

±0.d1d2 . . . ds × 22−2e−1

The significand stores the s bits after the leading 0. The reason for having sub-

Table 4: Positive sub-normal floating point number

Representation Number

Smallest di = 0 for all i < s and ds = 1 22−s−2e−1

Largest di = 1 for all i ≤ s (1− 2−s)× 22−2e−1

normal numbers is to ensure a gradual underflow to zero. For the purposes of
analysis, we will assume that all numbers representable on the machine are normal
numbers. Note that the number of significand digits in sub-normal numbers is lesser
than normal numbers.

60 Sivaram Ambikasaran

2.3 Machine precision

This is defined as the difference between the smallest number exceeding 1 that can be
represented on the machine and 1 (There are slightly different definitions depending
on the way rounding is done. In this article, we will assume that by rounding we
mean truncating or chopping off the digits. Depending on that the definition of
machine precision changes). Note that the smallest number exceeding 1 that can be
represented on the machine is 1.00 . . . 01 = 1 + 2−s.

Hence, machine precision is εm = 2−s

Note that if x is any real number (within the representable bounds on the machine)
and fl(x) is the floating point representation of x (i.e., after appropriate chopping x
will be represented as fl(x) on the machine), we then have∣∣∣∣x− fl(x)

x

∣∣∣∣ ≤ εm

From the above, observe that floating point representation introduces relative errors
and not absolute errors.

• Single precision Of the total of 32 bits, the first one is allotted for sign, the
next 8 for exponent and the remaining 23 for significand.

• Double precision Of the total of 64 bits, the first one is allotted for sign, the
next 11 for exponent and 52 for significand.

Table 5: Floating point numbers on single and double precision

32 bit machine 64 bit machine

Sub-normal
Smallest positive 2−149 ≈ 1.4× 10−45 2−1074 ≈ 4.94× 10−324

Largest positive (1− 2−23)× 2−126 ≈ 1.18× 10−38 (1− 2−52)× 2−1022 ≈ 2.23× 10−308

Normal
Smallest positive 2−126 ≈ 1.18× 10−38 2−1022 ≈ 2.23× 10−308

Largest positive (2− 2−23)× 2127 ≈ 3.4× 1038 (2− 2−52)× 21023 ≈ 1.8× 10308

Machine precision 2−23 ≈ 1.2× 10−7 2−52 ≈ 2.2× 10−16

Note that because of error in representation, any basic operation (including
+,−,×,÷) is subjected to a relative error bounded by the machine precision, i.e.,
if x and y are floating point numbers (i.e., they are represented exactly on the
machine), then we have

fl (x⊕ y) = (x⊕ y) (1 + δ)

What every computational mathematician should know 61

where ⊕ ∈ {+, 0,×,÷} and fl (·) is the floating point representation of the resulting
quantity and |δ| ≤ εm = machine precision.

For more details on IEEE floating point arithmetic, the readers may refer to [1].

3 Conditioning of a problem

In almost all applications, we are interested in obtaining an output f(x) for a given
input x. However, there are inherent uncertainties in the input data x. These
uncertainties could arise not only because of our inability to measure the input
precisely but also due to the fact that numbers need not be represented exactly
on the machine (as seen in the previous section). Hence, it is vital to understand
how the solution to a problem gets affected by small perturbations in the input
data. A given problem is said to be well-conditioned if “small” perturbations in x
result in “small” changes in f(x). An ill-conditioned problem is one where “small”
perturbations in x lead to a “large” change in f(x). The notion of “small” and
“large” often depends on the problem and application of interest.

x

x+ δx

f

f + δf

Input Output

Figure 2: Conditioning quantifies how small/large the change δf in output is for a
δx perturbation in the input.

3.1 Absolute condition number

One way to measure “conditioning” of a problem is as follows. Let δx denote a small
perturbation of x (the input) and let δf = f(x + δx) − f(x) be the corresponding
change in the output. The absolute condition number κ̂ (x, f) of the problem f at
x is defined as

κ̂ = lim
r→0

sup
‖δx‖=r

‖δf‖
‖δx‖

where ‖·‖ denotes an appropriate norm. Note that if f is differentiable at x, and
J(x) is the Jacobian of f(x) at x, we obtain that

κ̂ = ‖J(x)‖

62 Sivaram Ambikasaran

3.2 Relative condition number

Note that since the input, x, and the output, f(x), are on different spaces, a more
appropriate measure of conditioning is to measure the changes in the input and
output in terms of relative changes. The relative condition number κ (x, f) of the
problem f at x is defined as

κ = lim
r→0

sup
‖δx‖=r

(
‖δf‖
‖f‖

/
‖δx‖
‖x‖

)

As before, if f is differentiable at x, we can express this in terms of the Jacobian
J(x) as

κ =
‖J(x)‖

‖f(x)‖ / ‖x‖

Even though both the above notions have their uses, relative condition number is
more appropriate since as we saw earlier, floating point arithmetic introduces only
relative errors.

To gain a better understanding of the notion of conditioning, we will look at condi-
tioning of some basic problems in the next couple of sub-sections.

3.3 Conditioning of subtraction

Consider subtracting two positive numbers, i.e., f(a, b) = a− b. If we perturb
a by a+ δa and b by b+ δb, we have the condition number in 2-norm to be

κ(f ; a, b) = lim
r→0

sup
‖δ‖2=r

|δa − δb| / |a− b|√
δ2a + δ2b/

√
a2 + b2

= lim
r→0

sup
‖δ‖2=r

|δa − δb| / |a− b|
r/
√
a2 + b2

=

√
2
√
a2 + b2

|a− b|

Hence, we see that for large values of a and b such that a− b is small (i.e., a is close
to b), the problem is ill-conditioned.

3.4 Conditioning of solving for roots of polynomials

Consider finding the roots of the polynomial ax2 + bx + c. Here the function
f : R3 7→ R2, where f(a, b, c) =

[
r1 r2

]
, where r1, r2 are the roots of ax2 + bx + c.

Now let’s look at the condition at (a, b, c) = (1,−2, 1). The roots are 1, 1. Let’s

What every computational mathematician should know 63

perturb the 2 by δ. We have

κ = lim
δ→0

‖f(1,−(2 + δ), 1)− f(1,−2, 1)‖ / ‖f(1,−2, 1)‖
‖(1,−(2 + δ), 1)− (1,−2, 1)‖ / ‖(1,−2, 1)‖

=
‖(1,−2, 1)‖
‖f(1,−2, 1)‖

lim
δ→0

∥∥∥∥∥δ +
√
δ2 + 4δ

2
,
δ −
√
δ2 + 4δ

2

∥∥∥∥∥
δ

=

√
6

2
√

2
lim
δ→0

√
2δ2 + 2δ2 + 8δ

δ
=
√

3 lim
δ→0

√
δ2 + 2δ

δ
=
√

3 lim
δ→0

√
1 + 2/δ =∞

Hence, obtaining roots of a polynomial is ill-conditioned (especially when we want
to obtain a double root).

3.5 Conditioning of matrix-vector products

We have f(x) = Ax. The Jacobian is nothing but the matrix A. Hence, we have

κ (f ;A, x) =
‖A‖ ‖x‖
‖Ax‖

Note that

‖x‖ =
∥∥A−1 (Ax)

∥∥ ≤ ∥∥A−1∥∥ ‖Ax‖
Hence, we obtain that

κ (f ;A, x) =
‖A‖ ‖x‖
‖Ax‖

≤ ‖A‖ ‖A
−1‖ ‖Ax‖
‖Ax‖

= ‖A‖
∥∥A−1∥∥

where the bound is independent of x. Hence, ‖A‖ ‖A−1‖ is called as the condition
number of the matrix A and is denoted as κ(A).

3.6 Conditioning of a system of equations

We are interested in solving the linear system Ax = b. In this case, we have f(b) =
A−1b. The Jacobian of f(b) is nothing but the matrix A−1. Hence, we have

κ (x;A, b) =
‖A−1‖ ‖b‖
‖A−1b‖

=
‖A−1‖ ‖A (A−1b)‖

‖A−1b‖
≤ ‖A

−1‖ ‖A‖ ‖A−1b‖
‖A−1b‖

= κ(A)

For a bit more elaborate discussion on conditioning of a problem, the readers
may refer to Lecture 12 in [2].

64 Sivaram Ambikasaran

4 Stability of an algorithm

In an ideal world, where numerical algorithms provide exact solution to the under-
lying problem, condition number of the problem would be the only quantity that
would affect the accuracy of the solution. However, it turns out that the algorithm
(or more precisely the sequence of steps) we deploy to solve our problem also affects
the accuracy of our solution. Hence, we need to quantify how good our algorithm
is. Note that when we defined conditioning, the algorithm we adopted to compute
f(x) never came into picture. Conditioning is purely a property of the underlying
problem and has got nothing to do with the algorithm we adopt to solve the prob-
lem. To understand the notion of stability of an algorithm, lets take a step back
and try to abstract what we are after.

Let f : X 7→ Y be the mapping we are interested in computing. The algorithm
can be viewed as another mapping f̃ : X 7→ Y between the same two spaces. Ideally,
we would like f̃(x) = f(x). However, if this is not the case, we would like to quantify
the error due to the algorithm. A natural choice would be either the absolute error(∥∥∥f̃(x)− f(x)

∥∥∥) or the relative error


∥∥∥f̃(x)− f(x)

∥∥∥
‖f(x)‖

. This is termed as the

forward error. An algorithm is said to be forward stable if∥∥∥f̃(x)− f(x)
∥∥∥

‖f(x)‖
= O (εm)

where εm is the machine precision. However, there are couple of issues with the
forward stability, when we are working on a finite precision machine.

1. The input x might not be exactly represented on the machine and might get
represented as x+ δx on the machine.

2. The function f(x) might involve many operations each of which is subject to
its own rounding-off error in finite precision arithmetic.

For instance, lets just consider the first case: x being represented as x + δx on the
machine. Even if the algorithm, f̃ , to compute f is exact (say no approximation,
no rounding off, etc.), the algorithm will output f(x + δx). If the problem is ill-
conditioned, then the forward error will be large. Hence, if we use forward stability
to quantify the goodness of the algorithm, we see that the algorithm is unnecessarily
penalized due to the poor conditioning of the problem and the finite precision of the
machine. Hence, forward stability is not the right quantity to measure the goodness
of the algorithm.

To measure the goodness of an algorithm, we need a quantity that removes the
effect of conditioning and finite precision of the machine from the forward error.

What every computational mathematician should know 65

This motivates the definition of backward error and backward stability. We say that
an algorithm f̃ is backward stable, if for each input x there exists an input x̃ such
that

f (x̃) = f̃ (x) and
‖x̃− x‖
‖x‖

= O (εm)

x

f(x)

f̃(x)

f

f̃
x̃

f

Figure 3: Diagram for understanding forward error and backward error

The quantity
‖x̃− x‖
‖x‖

is denoted as the backward error. In words,

“A backward stable algorithm gives exactly the right output to nearly the right
input.”

Note that x̃ = f−1
(
f̃ (x)

)
. Loosely speaking, the inverse of the map f attempts to

remove the ill-conditioning of the forward mapping and hence one would hope that
the backward error purely characterizes the error due to the algorithm.

4.1 Backward stability of some basic algorithms

The four simplest computational steps we encounter in almost every algorithm
(+,−,× and ÷) are all backward stable.

1. Subtraction is backward stable: We will show the backward stability of
subtraction. Proving the backward stability of the remaining (+,×,÷) also
follows a similar pattern. Recall that any x1, x2 is represented on the machine
as x1 (1 + ε1) and x2 (1 + ε2) respectively, where |ε1| , |ε2| ≤ εm.
Consider f (x1, x2) = x1 − x2. We have

f̃ (x1, x2) = (x1 (1 + ε1)− x2 (1 + ε2)) (1 + ε3)

where 1 + ε3 takes into account the fact that every operation introduces a
rounding off error (|ε3| < εm). This gives us

f̃ (x1, x2) = x1 (1 + ε1) (1 + ε3)− x2 (1 + ε2) (1 + ε3) = f (x̃1, x̃2)

66 Sivaram Ambikasaran

where x̃1 = x1 (1 + ε1) (1 + ε3) and x̃2 = x2 (1 + ε2) (1 + ε3). We have

|x̃1 − x1|
|x1|

= ε1 + ε3 + ε1ε3 = O (εm)

and
|x̃2 − x2|
|x2|

= ε2 + ε3 + ε2ε3 = O (εm)

Hence, addition is backward stable.

2. Inner product is backward stable: Let x, y ∈ Rn. We have

f (x, y) = xTy =
n∑
k=1

xkyk

Note that each component of x and y have an error in representation on the
machine, i.e., fl (xi) = xi (1+δx,i) and fl (yi) = yi (1+δy,i). Recall that every
floating point operation involves a relative error of δ, where |δ| ≤ εm (εm is the
machine precision). Hence, note that

fl (xiyi) = fl (xi) fl (yi) (1+δi) = xi (1+δx,i) yi (1+δy,i) (1+δi)

where δi is the relative error when multiplying fl (xi) and fl (yi).
When implemented on a finite arithmetic machine, we have

fl(xTy) = fl

(
n∑
i=1

xiyi

)
=

(
fl

(
n−1∑
i=1

xiyi

)
+ fl (xnyn)

)
(1 + δ′n)

= fl

(
n−1∑
i=1

xiyi

)
(1 + δ′n) + (fl (xnyn)) (1 + δ′n)

= fl

(
n−1∑
i=1

xiyi

)
(1 + δ′n) + xnyn (1+δx,n) (1+δy,n) (1+δn) (1 + δ′n)

where δ′j is the relative error on adding the term fl (xj) fl (yj) (1+δj).

Take

x̃1 = x1(1+δ1)(1+δx,1)
n∏
j=2

(1+δ′j)

x̃k = xk(1+δk)(1+δx,k)
n∏
j=k

(1+δ′j)

What every computational mathematician should know 67

and
ỹk = yk(1+δy,k)

We have

x̃1 − x1 = x1

(
(1+δ1)(1+δx,1)

n∏
j=2

(
1+δ′j

)
− 1

)

x̃k − xk = xk

(
(1+δk)(1+δx,k)

n∏
j=k

(1+δ′j)− 1

)
ỹk − yk = ykδy,k

Let us use the ‖·‖max norm to compare the relative error between x̃ and x. We
have

‖x̃− x‖max

‖x‖max

≤
(
(1 + εm)n+1 − 1

)
≈ (n+ 1) εm +O(((n+ 1) εm)2)

‖ỹ − y‖max

‖y‖max

≤ εm

and thereby for each fixed (“small”) n, the inner product is backward stable.

3. Outer product is not backward stable
We will now prove that the outer product is not necessarily backward
stable. We have (

xyT
)
ij

= xiyj

When implemented on a finite arithmetic machine, we have fl
(
xyT

)
to be


x1
(
1+δx,1

)
0 · · · 0

0 x2
(
1+δx,2

)
· · · 0

.

.

.

.

.

.
. .
.

.

.

.
0 0 · · · xn

(
1+δx,n

)


︸ ︷︷ ︸

X

∆︷ ︸︸ ︷
1+δ11 1+δ12 · · · 1+δ1n
1+δ21 1+δ22 · · · 1+δ2n

.

.

.

.

.

.
.
.
.

.

.

.
1+δn1 1+δn2 · · · 1+δnn



y1
(
1+δy,1

)
0 · · · 0

0 y2
(
1+δy,2

)
· · · 0

.

.

.

.

.

.
.
.
.

.

.

.
0 0 · · · yn

(
1+δy,n

)


︸ ︷︷ ︸

Y

Note that the matrices X,∆ and Y are in general full rank matrices (Note
that the δij’s are not the same). To have backward stability, we first need to
find x̃ and ỹ such that

fl(xyT) = x̃ỹT

However, note that the LHS, i.e., fl(xyT), is in general a rank n matrix, whereas
the RHS, ie.., x̃ỹT , is a rank 1 matrix. Hence, no such x̃ and ỹ exists and
thereby the outer product is not backward stable.

For a bit more elaborate discussion on the different notions of stability, the
readers may refer to Lectures 14 & 15 in [2].

68 Sivaram Ambikasaran

5 Revisiting the example

Now let’s try to understand the reason why the output of Listing 1 doesn’t match
with the pen and paper calculation. First observe that 2.95 in binary is 10.111100
and hence has a non-terminating representation in binary. In double precision repre-
sentation, 2.9510 gets represented on the machine (we will assume that the machine
rounds the number to the nearest number representable on the machine) as

10.11 1100 · · · 1100︸ ︷︷ ︸
repeats 11 times

11012 =

(
2 +

1

2
+

1

22
+

1

23
+

1

24
+

1

27
+

1

28
+ · · ·+ 1

247
+

1

248
+

1

250

)
10

=
332140472518574110
112589990684262410

= 2.9500000000000001776356839400250464677810668945312510

Hence, we see that the relative-error in representation of 2.9510 on the machine is

2.9500000000000001776356839400250464677810668945312510 − 2.9510
2.9510

≈ 1.776410 × 10−16

2.9510
≈ 6.02155× 10−17

Now let’s quantify the error as the recurrence progresses till we obtain the twentieth
term. Note that the recurrence can be written as a linear system

a1 = 2.95

a2 = 2.95

a3 − 10a2 + 9a1 = 0

a4 − 10a3 + 9a2 = 0

... =
...

an − 10an−1 + 9an−2 = 0

Recasting this in matrix form, we have

A~a = ~r

where

A =



1 0 0 0 · · · 0 0 0
0 1 0 0 · · · 0 0 0
9 −10 1 0 · · · 0 0 0
0 9 −10 1 · · · 0 0 0
0 0 9 −10 · · · 0 0 0
...

...
...

...
. . .

...
... 0

0 0 0 0 · · · −10 1 0
0 0 0 0 · · · 9 −10 1


, ~a =



a1
a2
a3
a4
a5
...

an−1
an


, ~r =



2.95
2.95

0
0
0
...
0
0


.

What every computational mathematician should know 69

The input to the problem is the matrix A and the right hand side vector ~r.
The output is the vector ~a. Note that the matrix A is exactly represented on the
machine. The only error in the input is in representing the vector ~r on the machine
and is given by

~δr = ~rrepresented − ~r ≈


1.7764× 10−16

1.7764× 10−16

0
...
0

 ∈ Rn×1

The solution computed is denoted as ~acomputed and in MATLAB notation ~acomputed =
A\~rrepresented.
The input error is∥∥∥ ~δr∥∥∥

2

‖~r‖2
=
‖~rrepresented − ~r‖2

‖~r‖2
≈ 1.7764× 10−16

√
2

2.95
√

2
≈ 6.02155× 10−17

The observed output error (i.e., the observed forward error) is∥∥∥ ~δa∥∥∥
2

‖~a‖2
=
‖~acomputed − ~a‖2

‖~a‖2

The predicted maximum output error (i.e., the predicted maximum forward error)
is

κ×

∥∥∥ ~δr∥∥∥
2

‖~r‖2
where κ is the condition number of the problem given by

κ =
‖A−1‖2 ‖~r‖2
‖~a‖2

The backward error is
‖A~acomputed − ~r‖2

‖~r‖2
Note that we are using the ‖·‖2 to obtain the relative errors and relative condition
number. All these have been tabulated in Table 5.

70 Sivaram Ambikasaran

Table 6: Relative forward error and Relative backward error

Matrix Condition Predicted maximum Observed Backward

size number forward error forward error error

n κ =
‖A−1‖2 ‖~r‖2
‖~a‖2

κ×

∥∥∥ ~δr∥∥∥
2

‖~r‖2

∥∥∥ ~δa∥∥∥
2

‖~a‖2
‖A~acomputed − ~r‖2

‖~r‖2
3 1.105e+01 6.651e-16 1.738e-16 4.258e-16

4 9.128e+01 5.497e-15 1.663e-15 4.258e-16

5 7.398e+02 4.455e-14 1.341e-14 4.258e-16

6 6.083e+03 3.663e-13 1.102e-13 4.258e-16

7 5.069e+04 3.052e-12 9.182e-13 4.258e-16

8 4.267e+05 2.570e-11 7.730e-12 4.258e-16

9 3.621e+06 2.180e-10 6.559e-11 4.258e-16

10 3.092e+07 1.862e-09 5.600e-10 4.258e-16

11 2.653e+08 1.597e-08 4.806e-09 4.258e-16

12 2.286e+09 1.376e-07 4.141e-08 4.258e-16

13 1.977e+10 1.190e-06 3.581e-07 4.258e-16

14 1.714e+11 1.032e-05 3.105e-06 4.258e-16

15 1.491e+12 8.975e-05 2.700e-05 4.258e-16

16 1.299e+13 7.821e-04 2.353e-04 4.258e-16

17 1.134e+14 6.829e-03 2.054e-03 4.258e-16

18 9.919e+14 5.973e-02 1.797e-02 4.258e-16

19 8.689e+15 5.232e-01 1.574e-01 4.258e-16

20 7.622e+16 4.590e+00 1.381e+00 4.258e-16

What every computational mathematician should know 71

From Table 5, we can make the following inferences:

• The error in the input data due to finite precision representation of the number
2.95 is of the order of machine precision. Note that if we had started the
recurrence with a1 = a2 = 2.9375 instead of a1 = a2 = 2.95, then there is no

input error since the input 2.9375 = 2 +
1

2
+

1

4
+

1

8
+

1

16
is exactly represented

in double precision on the machine.

• The condition number of the problem scales exponentially with the problem
size, which in turn results in the forward error being large even though the
input error is small.

• The backward error is small and is of the order of machine precision. This in-
dicates that the algorithm (i.e., in this case, forward substitution) is backward
stable.

• The predicted maximum forward error is very close to the observed forward
error and clearly acts as an upper bound.

6 Conclusion

We have looked at three of the most important aspects to be kept in mind when
designing numerical algorithms. Any computational scientist worth his salt would
have to pay deep attention to each of these facets when designing algorithms to solve
computational problems.

References

[1] Michael L Overton. Numerical computing with IEEE floating point arithmetic.
SIAM, 2001.

[2] Lloyd N Trefethen and David Bau III. Numerical linear algebra, volume 50.
SIAM, 1997.

	Abstract
	Floating point arithmetic
	Normal floating point number
	Sub-normal floating point number
	Machine precision

	Conditioning of a problem
	Absolute condition number
	Relative condition number
	Conditioning of subtraction
	Conditioning of solving for roots of polynomials
	Conditioning of matrix-vector products
	Conditioning of a system of equations

	Stability of an algorithm
	Backward stability of some basic algorithms

	Revisiting the example
	Conclusion

