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Four-dimensional World

Special Theory of Relativity

United: Space & Time and Mass & Energy

Energy & Momentum conservation

We live in a four-dimensional world of space-

time continuum.

Einstein introduced the concept of four vec-

tors such that the scalar product of any two

four-vectors is invariant under Lorentz trans-

formations.

It is similar to the concept that the scalar prod-

uct of any two three-vectors in the three di-

mensional space is invariant under rotation of

coordinate system.
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We list below some of the four-vectors.

x : ct, x, y, z. (x0,x : time-space)
∂

∂x
: 1

c
∂
∂t, −

∂
∂x, −

∂
∂y , −

∂
∂z . ( time-space gradients)

p : E/c, px, py, pz. ( energy-momentum)

J : cρ, Jx, Jy, Jz. ( charge and current densities)

k : ω/c, kx, ky, kz. ( four wave-vector)

A : φ, Ax, Ay, Az. ( scalar, vector potentials)

We use upright bold letters to denote the

four-vector and italic bold letters to denote

the three-vectors. A scalar product of any two

four-vectors a and b is defined by

a · b = a0b0 − a · b = a0b0 − axbx − ayby − azbz.

The first component of the four-vector is usu-

ally called the time-component or the zeroth

component of the four vector. Note that in

defining the scalar product of two four-vectors,

we use different signs for the time component

and space components.
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Scalar Product of Four-vectors

x · x = c2t2 − x2 − y2 − z2.

∂

∂x
·
∂

∂x
=

1

c2
∂2

∂t2
−

∂2

∂x2
−

∂2

∂y2
−

∂2

∂z2
.

p · p = E2/c2 − p2
x − p2

y − p2
z .

p · x = Et− pxx− pyy − pzz.
k · x = ωt− kxx− kyy − kzz.
∂

∂x
·A =

1

c

∂φ

∂t
+
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z

=
1

c

∂φ

∂t
+ ∇ ·A

∂

∂x
· J =

∂ρ

∂t
+
∂Jx

∂x
+
∂Jy

∂y
+
∂Jz

∂z

=
∂ρ

∂t
+ ∇ · J

The scalar product of the four-vectors listed
above are invarient under Lorentz transforma-
tion. This gives a powerful method of calcu-
lating the kinematical variables and their trans-
formation from one inertial coordinate system
to another.

4



Lorentz transformation is common for both

Newtonian Mechanics and Maxwell’s theory of

Electromagnetism.

The special theory of relativity has brought

together Newtonian mechanics and Maxwell’s

equations of electromagnetism into one fold,

satisfying Lorentz transformations when one

goes from one inertial frame to another. In the

case of Newtonian mechanics, Galilian trans-

formations still hold true when the motion of

particles is much lower than the speed of light.

Lorentz transformations reduce to Galilian trans-

formations for velocities much less than the

velocity of light.
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Advantages of the Four-Vector Concept

Reaction : A + B −→ C + D + E

Any reaction obeys two conservation laws:

1. Energy conservation

2. Momentum conservation

Energy & Momentum depends on the frame

of reference.

In the Four-Vector formalism, the two laws

are merged into one law of Energy-momentum

conservation and is much simpler to go from

one reference frame to another.
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Four-momentum Square

Relativistic Energy-momentum relation for a

particle with rest mass m

E2 = p2c2 +m2c4

If p is the four momentum, then

p2 =
E2

c2
− p2 = m2c2.

In Units with c = 1,

p2 = E2 − p2 = m2.

The square of the four-momentum is equal

to the square of the rest mass in natural

units. This is independent of the reference

frame.
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Problem 1:

Proton-antiproton pair production

p+ p −→ p+ p+ p+ p̄.

What is the threshold energy of the incident
proton in laboratory frame for proton-antiproton
pair production in proton-proton collision?

Pa: four-momentum of the incident proton
Pb: four-momentum of the target proton
Pc: four-momentum of the aggregate of

particles in the final state.

Conservation of energy: Ea + Eb = Ec
Conservation of momentum: pa + pb = pc

They can be written jointly as conservation of
energy-momentum in the four-vector notation.

Pa + Pb = Pc.

Squaring, we get

(Pa + Pb) · (Pa + Pb) = Pc ·Pc.
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In c.m. frame,
the four momentum of the final state for the
threshold production of pp̄ pair is

Pc = (Ec,P c) = (4M,0),

since the minimum energy required for pp̄ pair
production is 4M , where M is the mass of the
proton (antiproton) and the net momentum
P c = 0 in c.m. frame.

Pa
2 + Pb

2 + 2Pa ·Pb = 16M2

2M2 + 2Pa ·Pb = 16M2, (Pa
2 = Pb

2 = M2)

Pa ·Pb = 7M2.

In laboratory frame,

Pa = (Ea,pa), Pb = (M,0).

So,

Pa ·Pb = MEa.

Since the scalar product of two four-vectors is
invariant under transformation of coordinate
systems,

MEa = 7M2 or Ea = 7M,
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Threshold energy of incident proton in Lab.

for pp̄ production

Ea: Total energy of the incident proton in Lab.

system for pp̄ pair production

Ea = M + Ta

= Rest mass energy M + Kinetic energy Ta

= 7M

This yields the value Ta = 6M , which is thresh-

old kinetic energy for the incident proton in

laboratory for the pp̄ pair production. Taking

the value M = 938 MeV, we obtain the kinetic

energy of the incident proton in laboratory for

threshold production of pp̄ as

Ta = 6× 938 MeV = 5.628 GeV.

Thus, we find that only a part of the kinetic

energy of the incident proton is used up in the

production of new particles.
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Problem 2

Decay of charged π-meson: π+ → µ+ + νµ

A charged π-meson (rest mass = 273 me) at

rest decays into a muon (rest mass = 207

me) and a neutrino (zero rest mass), where

me denotes the rest mass of electron (me =

0.511 Mev/c2. What is the energy of the emit-

ted neutrino?

Four-momentum equation for the pion-decay

Pπ = Pµ + Pν or Pπ −Pν = Pµ.

Squaring, we get

P2
π + P2

ν − 2Pπ ·Pν = P2
µ.

m2
π +m2

ν − 2mπEν = m2
µ.

Since mν = 0, we obtain

Eν =
m2
π −m2

µ

2mπ
=

2732 − 2072

2× 273
= 58.02me

= 58.02× 0.511 = 29.6 MeV.
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Problem 3

Photoproduction of π+ from proton:

γ + p→ n+ π+

What is the threshold energy of the photon

in MeV for photoproduction of π+ from pro-

ton, given the masses Mp = Mn = M = 939

MeV/c2 and mπ = 139 MeV/c2 ?

Energy-momentum conservation

Pγ + Pp = Pnπ,

Pγ: four-momentum of incident photon

Pp: four-momentum of the target proton

Pnπ: four momentum of final particles n & π

Squaring, we get (using units with c = 1)

P2
γ + P2

p + 2Pγ ·Pp = P2
nπ

0 +M2 + 2EγM = (M +m)2

Eγ =
2Mm+m2

2M
= m+

m2

2M
.

since Pγ ·Pp = EγM −P γ ·P p (P p = 0 in Lab.)
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We have used above the principle that the

scalar product of four-vectors is invariant

in all inertial frames.

So, we have evaluated Pγ · Pp in laboratory

frame and P2
nπ in centre of momentum (c.m.)

frame. In laboratory frame, the target particle

is at rest and in c.m. frame, the total momen-

tum of the final state of the particles will be

zero.

Substituting the values M = 939 MeV and m=

139 MeV, we get

Eγ = 149.29 MeV.

Thus, we obtain the threshold energy of the

incident photon to be 149.29 MeV for the pho-

toproduction of π+ from proton.
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Problem 4

The Compton Effect

When a photon is scattered by an electron, the

shift in the wavelength of the scattered photon

depends only on the angle of scattering and

not on the wavelength of the incident photon.

This is known as the Compton effect.

If λi is the wavelength of the incident photon

and λf is the wavelength of the scattered pho-

ton, then the shift in the wavelength ∆λ is

given by

∆λ = λf − λi =
h

m0c
(1− cos θ),

where θ denotes the angle of scattering of the

photon, m0 the rest mass of the electron, h the

Planck constant and c the velocity of light.
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The Compton scattering

HHH
HHHHj

H
HHH

HHH

-

6

x

y

�
��

ki

kf

pf

θ

φ
-

Four-vector equation for compton scattering.

ki + pi = kf + pf or ki − kf + pi = pf .

Squaring, we have

(ki − kf + pi)
2 = (pf)2

k2
i + k2

f + p2
i − 2ki · kf + 2ki · pi − 2kfpi = p2

f .

For photon, the rest mass is zero and for the

electron, the rest mass is m0.
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So, we obtain

k2
i = k2

f = 0; p2
i = p2

f = m2
0;

ki · kf = EiEf − (ki · kf) = EiEf(1− cos θ);

ki · pi = Eim0, since pi = 0;

kf · pi = Efm0, since pi = 0.

Substituting these values, we get

m0(Ei − Ef) = EiEf(1− cos θ),

Incident photon energy: Ei = hνi
Scattered photon energy: Ef = hνf
Angle of scattering: θ

νi − νf =
h

m0
νiνf(1− cos θ).

Since ν = 1/λ, in units c = 1, the Compton
shift in wavelength for the scattered photon,
in units with c = 1.

∆λ = λf − λi =
h

m0
(1− cos θ).

Restoring to MKS units,

∆λ =
h

m0c
(1− cos θ).
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Rotation in three-dimensional space

-
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C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
CO

P
(x′, y′, z′)
(x , y , z )

x′ = x cos θ + y sin θ

y′ = y cos θ − x sin θ

z′ = z

··········

···························

···
···
···
···
···
·························

x′

y′

r

x

y

x′

y′

θ

θ

x

y

O

Rotation about the z–axis through an angle θ

r2 = x2 + y2 + z2 = x′2 + y′2 + z′2.

The length of the vector r is invariant under

rotation of the coordinate system.

Rotation about the common z-axis, leaves the

z-coordinate unchanged. So, consider only changes

in the x-y plane.
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Orthogonal Transformation

We can write the transformation of coordi-

nates in the form of a matrix R(θ).[
x′

y′

]
= R(θ)

[
x
y

]
=

[
cos θ sin θ
− sin θ cos θ

] [
x
y

]
.[

x
y

]
= R−1(θ)

[
x′

y′

]
=

[
cos θ − sin θ
sin θ cos θ

] [
x′

y′

]
.

This is what is called the orthogonal transfor-

mation since the transpose R̃(θ) of the matrix

R(θ) is equal to its inverse R−1(θ).

R̃(θ) = R−1(θ).

The above consideration in three-dimensional

space can be extended to n-dimensional space

wherein a space-point can be represented by a

set of n coordinates, x1, x2, x3 · · ·xn.
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Four-dimensional complex Minkowski space

Let the Fourth Coordinate be x4 = ict.

The Minkowski space is a complex four-dimensional

space. The Lorentz transformation can be vi-

sualized as a rotation in the complex Minkowski

space that preserves the length of the vector.

x′2 + y′2 + z′2 − c2t′2 = x2 + y2 + z2 − c2t2.

The length of the vector (x2+y2+z2−c2t2)1/2,

in this case may be real or imaginary, real if

x2 + y2 + z2 − c2t2 is positive, or imaginary if

x2 +y2 +z2−c2t2 is negative. This means that

the Lorentz transformation is an orthogonal

transformation in the four-dimensional com-

plex Minskowski space.

19



Consider Lorentz transformation between any

two inertial frames which are in uniform rela-

tive motion along the common x-axis.

Consider changes in x1 and x4 coordinates only

since x2 and x3 remain invariant.

x′1 = γ(x1 − vt) −→ x′1 = γ(x1 + iβx4);

t′ = γ
(
t− vx1

c2

)
−→ x′4 = γ(x4 − iβx1).

(1)

x4 = ict, x′4 = ict′, γ = (1 − β2)−1/2, β = v/c.

In matrix form.[
x′1
x′4

]
=

[
γ iβγ
−iβγ γ

] [
x1
x4

]
. (2)

The Lorentz transformation matrix

L =

[
γ iβγ
−iβγ γ

]
, (3)

is an orthogonal matrix.

L̃ = L−1; L̃L = LL̃ = 1. (4)

The matrix L represents a rotation in x1 -

x4 plane of Minskowski’s 4-dimensional space

through an angle θ which is imaginary.
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Four-dimensional real Minkowski space

Replace x4 = ict by x0 = ct.
The new coordinates are x0, x1, x2, x3.
Lorentz transformation equations in terms of
the new set of coordinates are

x′ = γ(x− vt) −→ x′1 = γ(x1 − βx0);

t′ = γ
(
t− vx

c2

)
−→ x′0 = γ(x0 − βx1).

Notations: x0 = ct, β = v/c, γ = (1 − β2)−
1
2

The Eq. in matrix form[
x′0
x′1

]
=

[
γ −βγ
−βγ γ

] [
x0
x1

]
.

The Lorentz transformation matrix

L =

[
γ −βγ
−βγ γ

]
,

is not an orthogonal matrix.

L̃ 6= L−1; LL̃ 6= 1.

The inverse Lorentz transformation[
x0
x1

]
=

[
γ βγ
βγ γ

] [
x′0
x′1

]
.
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The metric tensor gµν

In order to define the scalar product of two

four-vectors, which is invariant under Lorentz

transformation, a metric tensor gµν (gµν) is in-

troduced.

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

If x is a four-vector with components x0, x1, x2, x3

and x̃ is its transpose, then

x̃gx =
[
x0 x1 x2 x3

] 
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



x0
x1
x2
x3


= x2

0 − x
2
1 − x

2
2 − x

2
3.
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Contravariant and covariant four-vectors

The introduction of metric tensor leads to two

different types of four vectors - contravariant

and covariant four-vectors.

Let us consider a four-vector A. It has four

components, one time component At and three

space components Ax, Ay, Az. A contravariant

four-vector is identified by a superscript.

Aµ : A0, A1, A2, A3 = At, Ax, Ay, Az,

A covariant four-vector is identified by a sub-

script.

Aµ : A0, A1, A2, A3 = At, −Ax, −Ay, −Az.
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Using the metric tensor, one can convert a

contravariant four-vector into a covariant four-

vector∗ and vice versa.

Aµ =
∑
ν
gµνA

ν, µ = 0,1,2,3. (5)

Aµ =
∑
ν
gµνAν, µ = 0,1,2,3. (6)

The scalar product of any two four-vectors A

and B can be written as

A ·B = AµBµ = A0B0 +A1B1 +A2B2 +A3B3

= AtBt −AxBx −AyBy −AzBz
= AtBt −A ·B. (7)

We adopt the convention of representing four-

vectors by upright bold letters A, B and three-

component vectors by italic bold letters A, B.

∗The components At,−Ax,−Ay,−Az of the four-vector
Aµ have the same signs as the metric tensor gµν and so,
it is called the covariant four-vector. The components
At, Ax, Ay, Az of the four-vector Aµ have signs that are
not in conformity with the signs of the metric tensor
gµν and so it is called the contravariant four-vector.
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A contravariant four-vector Aµ transforms from

one coordinate system (unprimed) xµ to an-

other coordinate system (primed) x′µ accord-

ing to the formula

A′µ =
∑
ν

∂x′µ

∂xν
Aν; Aν =

∑
µ

∂xν

∂x′µ
A′µ; (8)

On the other hand, a covariant four-vector

Aµ transforms from the unprimed coordinate

system to the primed coordinate system and

vice versa according to the law

A′µ =
∑
ν

∂xν

∂x′µ
Aν; Aν =

∑
µ

∂x′µ

∂xν
A′µ; (9)

It can be easily checked that the distinction

between the contravariant and covariant vector

vanishes in the case of complex four-dimensional

cartesian Minskowski space since the Lorentz

transformation corresponds to an orthogonal

transformation. The distinction arises only in

the case of real Minkowski space, due to intro-

duction of the metric tensor gµν.



Lorentz Transformations

Contravariant Vector

[
A′0

A′1

]
=

[
γ −βγ
−βγ γ

] [
A0

A1

]
.[

A0

A1

]
=

[
γ βγ
βγ γ

] [
A′0

A′1

]
.

Covarient vector

[
A′0
A′1

]
=

[
γ βγ
βγ γ

] [
A0
A1

]
.[

A0
A1

]
=

[
γ −βγ
−βγ γ

] [
A′0
A′1

]
.
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